INTERNATIONAL TRADE CENTER
HVAC RENOVATIONS PROJECT
Project # 1070
Task #2

SPECIFICATIONS

ISSUED BY
Technical Services Department
ALABAMA STATE PORT AUTHORITY
James K. Lyons, Director & CEO
Kay Ivey, Governor of Alabama
January 9, 2020
SECTION 16050 - BASIC ELECTRICAL MATERIALS AND METHODS

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes: General requirements for providing basic electrical materials and methods.

B. Related Work Specified in Other Sections Includes:

 1. Certain items of equipment, and various control devices including conduit and wiring which are indicated on electrical drawings to be connected, but are specified in other sections pertaining to plumbing, heating, ventilating, air conditioning, temperature control systems, process equipment, process control systems, and instrumentation. Install and connect these items to the electrical system as indicated or required in accordance with the Contract Documents.

C. Overall Application of Specifications: This Section applies to all sections of Division 16 and to other sections that include electrical equipment requirements except when in these individual sections requirements are otherwise specified to provide and install all materials necessary for a complete operational system.

D. Temporary Requirements: This Section applies to any temporary circuits, overcurrent devices, conduit, wiring, and other equipment required during changeover from existing to a new electrical system. This Section also applies to temporary rewiring of lighting and power circuits, instruments and devices.

1.2 DEFINITIONS

A. Hazardous Areas: Hazardous areas as defined by the NEC as Class I, Division 1, Group D, or Class I, Division 2, Group D hazardous are as follows:

 1. Class 1, Division 1, Group D
 a. Wet Well

 2. Class 1, Division 2, Group D
 a. Pump Room and Dry Well

1.3 SYSTEM DESCRIPTION

A. Design Requirements: Design requirements are specified in the applicable sections and as indicated on the Drawings.
B. Performance Requirements: Performance requirements are specified in the applicable sections and as indicated on the Drawings.

1.4 SUBMITTALS

A. General: Provide all submittals, including the following, as specified in Division 1.

B. Product Data and Information: Provide complete list of electrical equipment and materials to be furnished showing manufacturer, catalog number, size, type, voltage rating and other pertinent information.

1. Provide catalog data on manufacturer's standard equipment and materials. Clearly indicate on catalog cuts the equipment and devices being proposed.

2. Identification: Provide complete schedule and listing of system and equipment identification labels with legends.

C. CONTRACTOR's Shop Drawings: Provide shop drawings on items manufactured for the Contract.

1. Provide connection diagram and schematic for each piece of electrical equipment. A manufacturer's standard connection diagram or schematic showing more than one method of connection is not acceptable unless it is clearly marked to show the intended method of connection.

2. Provide diagrams showing connections to field equipment. Clearly differentiate between manufacturer's wiring and field wiring.

3. Provide raceway layout drawings showing conduits, boxes, and panels which contain the conductors to be provided. Include schedules listing conduit sizes and conductor content and identification.

4. Where additions and modifications are made to existing equipment, provide drawings which include both retained existing equipment and new Work.

D. Coordination Drawings: Prepare coordination drawings to a scale of 1/4"=1'-0" or larger; detailing major elements, components, and systems of electrical equipment and materials in relationship with other systems, installations, and building components. Indicate locations where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including but not necessarily limited to the following:

1. Indicate the proposed locations of major raceway systems, equipment, and materials. Include the following:
a. Clearances for servicing equipment, including space for equipment disassembly required for periodic maintenance.

b. Exterior wall and foundation penetrations.

c. Fire-rated wall and floor penetrations.

d. Equipment connections and support details.

e. Sizes and location of required concrete pads and bases.

2. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

3. Prepare floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

4. Prepare reflected ceiling plans to coordinate and integrate installations, air outlets and inlets, light fixtures, communications systems components, sprinklers, and other ceiling-mounted devices.

E. Record Documents: Prepare record documents, and in addition to the requirements specified in Division 1, indicate installed conditions for:

1. Major raceway systems, size and location, for both exterior and interior; locations of control devices; distribution and branch electrical circuitry; and fuse and circuit breaker size and arrangements.

2. Equipment locations (exposed and concealed), dimensioned from prominent building lines.

3. Approved substitutions, and actual equipment and materials installed.

F. Maintenance Manuals: Prepare maintenance manuals, and in addition to the requirements specified in Division 1, include the following information for equipment items:

1. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and catalog numbers of replacement parts.

2. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.
3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

4. Servicing instructions and lubrication charts and schedules.

1.5 QUALITY ASSURANCE

A. Codes: Provide all electrical Work in accordance with applicable local codes, regulations and ordinances. If there is a conflict between the requirements specified in the Contract Documents and the codes, follow the more stringent requirements as determined and approved.

B. Testing: As a minimum, provide standard factory and field tests for each type of equipment. Other tests may be specified in the applicable equipment section.

C. Labeling: Provide all electrical equipment and materials listed and approved by Underwriters Laboratories with the UL label or other OSHA recognized testing laboratories attached to it.

D. Standard Products: Unless otherwise indicated, provide electrical materials and equipment which are the standard products of manufacturers regularly engaged in the production of such materials and equipment. Provide the manufacturer's latest standard design that conforms to these Specifications. When two or more units of the same class of material and equipment are required, provide the products of the same manufacturer.

1.6 DELIVERY, STORAGE AND HANDLING

A. General: Deliver, store and handle all products and materials as specified in Division 1 and as follows:

B. Shipping and Packing: Provide materials and equipment suitably boxed, crated or otherwise completely enclosed and protected during shipment, handling, and storage. Clearly label such boxes, crates or enclosures with manufacturer's name, and name of material or equipment enclosed.

C. Acceptance at Site: Conform to acceptance requirements as required in Division 1. Repair or replace all materials and equipment damaged by handling and storage as directed at no additional Contract cost.

D. Storage and Protection: Protect materials and equipment from exposure to the elements and keep them dry at all times. Handle and store to prevent damage and deterioration in accordance with manufacturer's recommendations.
1.7 PROJECT CONDITIONS

A. General: The Drawings indicate the extent and general arrangement of the principal electrical elements, outlets and circuit layouts. Connect and install all electrical elements and devices to form a workable system as required by the Contract Documents whether the connections and installations are specifically stated in the Specifications or shown. Provide necessary materials and installation wherever required to conform to the specific requirements of the furnished equipment and for proper installation of the Work.

B. Schematics: In general the runs of feeders are shown schematically and are not intended to show exact routing and locations of raceways. Verify actual and final arrangement, equipment locations, and prepare circuit and raceway layouts before ordering materials and equipment. Equipment locations are approximate and are subject to modifications as determined by equipment dimensions.

C. Coordination of Work: Coordinate the Work so that the electrical equipment may be installed without altering building components, other equipment or installations.

D. Departure from Design: If departures are deemed necessary due to structural conditions, obstructions or other problems, provide details of such departures and the reasons for requesting approval as soon as practicable but not later than the submittal of the raceway layout drawings. Do not make any departures without written approval.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

3.1 ROUGH-IN

A. Final Location: Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

3.2 ELECTRICAL INSTALLATIONS

A. Sequence, coordinate, and integrate the various elements of electrical systems, materials, and equipment. Comply with the following requirements:

1. Coordinate electrical systems, equipment, and materials installation with other building components.

2. Verify all dimensions by field measurements.
3. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for electrical installations.

4. Coordinate the installation of required supporting devices and sleeves to be set in cast-in-place concrete and other structural components, as they are constructed.

5. Sequence, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.

6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.

7. Coordinate connection of electrical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.

8. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the ENGINEER for resolution.

9. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.

10. Install electrical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations.

11. Install access panel or doors where units are concealed behind finished surfaces.

12. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

3.3 CUTTING AND PATCHING

A. Perform cutting and patching as specified in Division 1. In addition to the requirements specified in Division 1, the following requirements apply:
1. Perform cutting, fitting, and patching of electrical equipment and materials required to:
 a. Uncover Work to provide for installation of ill-timed Work.
 b. Remove and replace defective Work.
 c. Remove and replace Work not conforming to requirements of the Contract Documents.
 d. Remove samples of installed Work as specified for testing.
 e. Install equipment and materials in existing structures.
 f. Locate existing structural reinforcing with a pachometer where core drilled penetrations are required so as not to cut the steel reinforcing.

2. Cut, remove, and properly dispose of selected electrical equipment, components, and materials as indicated, including but not limited to removal of electrical items indicated to be removed and items made obsolete by the new Work. Deliver all the existing removed to the OWNER as directed.

3. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

4. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

5. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.

6. Patch finished surfaces and building components using new materials as specified for the original installation and experienced Installers. Installers' qualifications refer to the materials and methods required for the surface and building components being patched.

END OF SECTION
SECTION 16108 - MISCELLANEOUS EQUIPMENT

PART 1 GENERAL

1.1 SCOPE OF WORK

A. Furnish and install all miscellaneous equipment as hereinafter specified and as shown on the Drawings.

PART 2 PRODUCTS

2.1 MATERIALS

A. Disconnect Switches:

1. Fusible and non-fusible disconnect switches shall be heavy-duty, NEMA type H. quick-make, quick-break, visible blades, 600 volt, 3 pole with full cover interlock. All current carrying parts shall be copper.
2. Enclosure type shall be NEMA 1 except as shown on the drawings.
3. Where weatherproof disconnects are called for on the drawings, the Contractor shall provide a 480V, 3 pole, non-fusible switch in a NEMA 4, stainless steel enclosure.
4. NEMA Type 7 enclosures shall be cast iron.
5. Switches shall be horsepower rated as manufactured by the Square D Co., or equal.

B. Magnetic Motor Starters

1. Motor starters shall be 3 pole, 3-phase, 60 Hz, 600 volt, magnetically operated, full voltage non-reversing. NEMA sizes shall be as required for the horsepowers shown on the drawings.
2. Each motor starter shall have a 120 volt operating coil, and control power transformer. Three phase starters shall have 3 overload relays. Auxiliary contacts shall be provided as shown on the drawings or required.
3. Overload relays shall be manually reset.
4. Control power transformer shall be as shown on drawings. Transformer secondaries shall be equipped with time-delay fuses.
5. Built-in control stations and indicating lights shall be furnished where shown on the drawings.
6. NEMA 4X enclosures shall be 304 Stainless Steel.
7. Magnetic motor starter shall be as manufactured by the Square D Co. or equal.
C. Control Stations:

1. Control stations shall be heavy-duty type, with full size operators.
2. Pilot lights shall be complete with glass jewels and 150 volt lamps.

D. Dry Type Lighting and Control Transformer:

1. Transformer shall be dry type, two-winding with DVA and voltage ratings as shown on the drawings.
2. Four full capacity taps shall be furnished, two 22 percent above and two 22 percent below rated primary voltage.
3. Transformers shall be built in accordance with ANSI C89 and NEMA ST1-4 with a maximum insulation temperature rise of 80 degrees C.

E. Control Relays:

1. Control relays shall be heavy duty machine tool type, with 10 ampere, 600 volt, convertible contacts. Time delay relays shall be pneumatic, adjustable 0.2 to 180 seconds.
2. Relays shall be CR 2810 and CR 2820 as manufactured by the General Electric Co. or equal.

END OF SECTION
PART 1 GENERAL

1.1 SUMMARY

A. Section Includes: Requirements for providing electrical raceway systems as indicated, in accordance with the Contract Documents.

B. Related Work Specified in Other Sections Includes:
 1. Section 09900 – Painting and Coating

1.2 REFERENCES

A. Codes and standards referred to in this Section are:
 1. ANSI C80.1 - Specifications for Rigid Steel Conduit, Zinc Coated
 2. ANSI C80.3 - Specifications for Electrical Metallic Tubing, Zinc Coated.
 3. ANSI C80.5 - Specifications for Rigid Aluminum Conduit
 4. ANSI C80.6 - Intermediate Metal Conduit (IMC) - Zinc Coat
 5. ANSI/NFPA 70 - National Electrical Code
 6. NEMA RN1 - Polyvinyl Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit.
 7. NEMA TC2 - Electrical Plastic Tubing (EPT) and Conduit (EPC-40 and EPC-80)
 8. UL 1 - Flexible Metal Conduit
 9. UL 6 - Rigid Metal Conduit
 10. UL 360 - Liquid-Tight Flexible Steel Conduit
 11. UL 651 - Schedule 40 and 80 Rigid PVC Conduit
 12. UL 797 - Electrical Metallic Tubing
 13. UL 1242 - Intermediate Metal Conduit
14. Federal Specification WW-C-540C-Conduits, Metal, Rigid (Electrical, Aluminum)

1.3 SUBMITTALS
A. Provide all submittals, including the following, as specified in Division 1 and Section 16050.

1.4 QUALITY ASSURANCE
A. Codes: Provide all materials and workmanship to meet the requirements of ANSI/NFPA 70 National Electrical Code.
B. Regulatory Requirements: Provide UL listed components.

1.5 DELIVERY, STORAGE AND HANDLING
Deliver, store and handle all products and materials as specified in Division 1.

PART 2 PRODUCTS

2.1 MANUFACTURERS
A. Acceptable manufacturers are listed below. Other manufacturers of equivalent products may be submitted.

1. Rigid steel and intermediate metal conduits and electrical metallic tubing:
 a. Allied Tube and Conduit
 b. Wheatland Tube Company
 c. LTV Steel Tubular Products Company

2. PVC coated steel conduits fitting and boxes:
 a. Robroy Industries
 b. Occidental Coating Company
 c. Perma-Cote Industries

3. Rigid nonmetallic conduits:
 a. Carlon Company
 b. Certainteed Corporation
 c. National Pipe Company

4. Aluminum Conduits:
 a. V.A.W. of America, Inc.
b. Easco Aluminum
c. Alumex, Inc.

5. Liquidtight flexible steel conduit:
 a. Electri-Flex Company
 b. The International Metal Hose Co.
 c. Alflex Corp.
 d. Anamet, Inc.

6. Conduit Fitting and Connectors
 a. Appleton Electric Company
 b. Thomas & Betts
 c. Crouse Hinds Company
 d. OZ/Gedney
 e. Killark
 f. Adulet-PLM

7. Boxes and Enclosures:
 a. Appleton Electric Company
 b. Raco/Bell
 c. Crouse Hinds Company
 d. Steel City
 e. Hoffman
 f. Hope

8. Strut Channel and Fittings
 a. Allied Tube & Conduit
 b. B-Line Systems, Inc.
 c. Kindorf
 d. Enduro
 e. Strut Tech
 f. Unistrut

9. Fire Stop System
 a. 3M/Electrical Products Division
 b. International Protective Coatings
 c. Nelson Electric

10. Terminal Blocks
 a. Phoenix Contact
 b. Entrelec
 c. Weidmuller
2.2 RACEWAYS

A. General: Provide minimum 3/4-inch raceways.

B. Raceway Requirements: Provide raceways meeting the following requirements:

1. Provide rigid steel, heavy wall, hot-dip galvanized in accordance with the requirements of UL-6 and ANSI C80.1.

2. Provide rigid nonmetallic Schedule 80 PVC electrical conduit in accordance with the requirements of UL Standard 651 and NEMA Standard TC2 with solvent cement joints.

3. Provide liquidtight flexible single strip steel, hot-dip galvanized conduit with PVC jacket in accordance with requirements of UL 1. Provide a continuous copper bonding conductor wound spirally between convolutions on the inside of the conduit meeting requirements of UL 360 for conduit sizes 1-1/4-inch and smaller.

2.3 FITTINGS

A. General: Provide fittings of similar material as raceways.

B. Fittings Requirements: Provide fittings meeting the following requirements:

1. Set screw or indenter type fittings are not acceptable. Use threaded connectors for all rigid or intermediate metal conduits.

2. Use solvent cement connections for all rigid nonmetallic conduits.

3. Use insulated connectors for liquidtight flexible conduit.

4. Expansion/Deflection Fittings: Use a deflection and expansion coupling for rigid and intermediate metal conduits that provide a 3/4 inch movement in all directions from normal and a 30 degree angular deflection. Use coupling that includes internal bonding jumper.

 Use a nonmetallic expansion coupling for nonmetallic conduits that provides a 4-inch maximum expansion.

5. Bushings

 a. Provide insulated nonmetallic bushing rated 105 degrees C for all installations where bonding is not required.

 b. Provide insulated metallic grounding and bonding bushing rated 150 degrees C where bonding is required.
6. Fittings for Hazardous Locations:
 a. Provide fittings that conform to the requirements of NEC Chapter 5 for Class I, Division 1, Group D hazardous locations.
 b. Provide seal fittings suitable for either horizontal or vertical installation.

2.4 WALL AND FLOOR PENETRATIONS

A. Watertight:
 1. For individual conduit penetrations in exterior walls or floors provide watertight sealing sleeves consisting of a steel sleeve with pressure ring and clamps.
 2. For individual conduit penetrations in existing walls or floors, provide watertight sealing bushing consisting of a neoprene sealing ring between two PVC coated steel pressure discs. Provide stainless steel captive screws for sealing ring compression.

2.5 BOXES AND CABINETS

A. Outlet Box Requirements:
 1. Provide cast aluminum boxes for aluminum conduit systems.
 2. Provide galvanized cast iron boxes for galvanized rigid steel conduit systems.
 3. Provide nonmetallic boxes and covers in PVC conduit systems.
 4. Provide watertight gasketed covers held with nonferrous screws for all cast metal boxes.

B. Junction and Pull Box Requirements:
 1. Provide cast aluminum boxes with mounting lugs, threaded hubs and gasket covers for surface mounted boxes
 2. Provide fabricated sheet metal boxes when cast metal box weight exceeds 50 pounds. Construct box from 1/8-inch thick galvanized sheet steel or aluminum with sides return channel flanged around cover opening. Provide angle or channel supporting frame. Provide continuously welded and ground smooth seams. Provide mounting lugs and threaded conduit hubs.
 3. Provide cast steel or fabricated 10-gauge Type 316 stainless steel for boxes either partially or fully encased in concrete. For partially encased boxes provide sides return channel flanged around cover opening. For fully encased boxes
provide flush covers. Provide continuously welded and ground smooth seams. Provide mounting lugs and threaded conduit hubs.

4. Provide watertight gasketed covers held with nonferrous captive knurled head screw slot bolts.

5. Provide two padlocking hasps for boxes containing medium voltage cables.

6. Construct all fabricated boxes located indoors to NEMA 13 requirements.

7. Manufacture all boxes located outdoors to NEMA 4 requirements.

8. Manufacture all boxes located in hazardous areas to NEMA 7 requirements.

C. Terminal Box Requirements:

1. Provide minimum 12 gauge stainless steel fabricated box with mounting lugs, floor stand, and hinged doors.

2. Equip the door with continuous piano hinge and 3 point lockable latch. Provide print pocket on inside of door.

3. Fabricate back plate of 12 gauge minimum steel with white enamel finish for mounting terminals and wire troughs.

4. Provide wire troughs consisting of plastic ducts with snap slot design and removable covers. Run all wiring within wire troughs.

5. Furnish a schedule of terminals with the following information
 a. Source
 b. Type of Signal
 c. Function

6. Provide removable jumpers to allow operation of the equipment.

7. Separate analog terminals from all other terminals.

8. Provide number of terminals shown. Where the number of terminals are not shown, provide sufficient terminals for each wire entering the terminal box plus 20 percent but not less than 10 spare terminals.

9. Terminals:
 a. All catalog numbers refer to Phoenix Contact Type for the purpose of establishing the standard of quality and general configuration desired.
 b. Provide symmetrical type steel mounting rails, DIN-EN50022.
c. Analog Signals: Provide terminals in enclosed housing suitable for wires from 22 to 12 AWG rated 600 volts with gray body, knife disconnect and test connection socket on both sides of disconnect, Phoenix Contact Type UK 5-MTK-P/P.

d. Control and Alarm Signals: Provide terminals suitable for wires from 18 to 8 AWG rated 50 amperes at 600 volts, blue body, Phoenix Contact Type UK10.

2.6 SUPPORTING DEVICES

A. Raceway Supports: Provide raceway supports meeting the following requirements:

1. Do not use perforated straps or plumbers tape for conduit supports.

2. Provide expansion bolts or inserts for fasteners in concrete, toggle bolts for hollow masonry or frame construction, and preset inserts for prestressed concrete.

3. Conduit Straps and Backs:

 a. For metallic conduits, use steel or malleable iron.

 b. For nonmetallic and PVC coated conduits, use PVC coated malleable iron.

4. Conduit Hangers

 a. For metallic conduits, use steel adjustable conduit hangers or clevis hangers.

 b. For nonmetallic and PVC coated conduits, use PVC coated adjustable conduit hangers.

5. Beam Clamps:

 a. For metallic conduits, use malleable iron with steel bolt.

 b. For nonmetallic and PVC coated conduit, use PVC coated malleable iron with stainless steel bolt.

6. Trapeze Hangers:

 a. For metallic conduits use 12 gauge 1-1/2-inch square steel channels with steel channel straps to secure conduits.
b. For nonmetallic or PVC coated conduit, use either PVC coated 12 gauge 1-1/2-inch square steel channels or 1-5/8-inch square fiberglass channels. Use PVC coated straps with stainless steel bolts for securing conduits.

c. Provide addition channels welded together to limit the deflection to 1/240th of span.

7. Thread Rod

a. Provide thread rod with the minimum size as follows:

 (1) Conduit Hangers

 (a) 3/4-inch to 1-1/2-inch conduit: 1/4-inch thread rod

 (b) 2-inch to 3-1/2-inch conduit: 3/8-inch thread rod

 (c) 4-inch and larger: 1/2-inch thread rod

 (2) Trapeze Hangers: Provide thread rod of sufficient size to support the load. Use a minimum of 3/8-inch thread rod.

b. For Metallic Conduit Systems: Use continuous threaded galvanized steel rod.

c. For Nonmetallic or PVC Coated Conduit Systems: Use a continuous threaded PVC coated galvanized steel rod.

PART 3 EXECUTION

3.1 PREPARATION

A. General: Install electrical equipment and material of the size, type and general routing as shown or required.

B. Coordination with Reinforcing: Install raceway, fittings, boxes and cabinets free from direct contact with reinforcing steel.

C. Alignment: Provide fasteners, anchor bolts, anchorage items and supports as required to insure proper and rigid alignment. Attach equipment with fasteners sized according to size and weight of the equipment and the thickness of the supporting surface.

D. Aluminum Coating: Where aluminum is placed in contact with dissimilar metal or concrete, separate contact surfaces with gasket, nonabsorptive tape or coating as specified in Section 09900 to prevent corrosion.
E. Grounding: Make metallic raceways electrically and mechanically continuous and ground as required. Install conduits continuous between outlets, boxes, cabinets and panels.

3.2 INSTALLATION

A. General: Unless otherwise indicated, install conduits exposed, parallel or perpendicular to building floors, ceilings and walls, and to avoid interference with other work. In architecturally finished areas, conceal conduits within finished walls, ceilings and floors. Cut conduits square and deburr the cuts to the same degree as the conduit manufacturer. Saw cut aluminum conduit to prevent reduction in internal area. Fasten conduit securely to outlets, junction, pull and terminal boxes. Provide caps and seals to prevent the entrance of foreign material and moisture during installation and before pulling wire.

1. Where conduit size is not shown, provide conduits one size larger than indicated in Table 4, Chapter 9 of the NEC.

2. Support raceways concealed above suspended ceilings from the slab above suspended ceiling in same manner as exposed raceways. Do not support raceways from suspended ceiling supports.

3. Keep conduit at least six inches away from high temperature piping, ducts, flues and surfaces. For mounting on concrete and masonry surfaces provide a minimum of 1/4 inch air space between conduit and mounting surface. Support and fasten conduit to building structural members spaced in accordance with electrical codes. Support conduit at least every eight feet or less in accordance with NEC requirements.

4. When two or more exposed conduits are in the same general routing, provide parallel installation with symmetrical bends and for three or more provide trapeze hangers. Size trapeze hangers with space for 25 percent additional conduits.

5. Make changes in direction with bends or fittings. Make field bends and offsets with a hand bender or conduit-bending machine.

6. Run conduit in buildings with no more than the equivalent of (three) 90 degree bends between pull points. Provide no more than (125) feet of conduit runs between pull points. Provide pull boxes where shown, specified or wherever required to install conductors and to meet the above requirement.

7. Install pull and junction boxes in accessible locations with working space in front of and around the installation. Obtain approval to locate boxes in finished areas.

8. Install an expansion fitting when a conduit crosses a building structural expansion joint.
9. Unless otherwise approved, install conduits to cross at right angles to building structural expansion joints.

10. Where approved for encased installation, install conduits in slabs as close to the middle of concrete slabs as practicable without disturbing reinforcement. Do not use conduit with an outside diameter exceeding one-third of the slab thickness. Do not place conduits closer than three diameters on centers, except at cabinet locations where the slab thickness is increased.

11. Pitch conduits to outlet boxes to avoid trapping moisture. Where dips are unavoidable in exposed conduit runs, install drain fitting at low point.

B. Conduit Material Types: Provide conduit as follows:

1. Use rigid steel conduits in all indoor and outdoor installations or concrete encased within building structures.

2. Install rigid nonmetallic Schedule 80 conduits underground and in wet well structures, unless specifically detailed otherwise.

3. Hazardous Locations:
 a. Hazardous locations include the existing and new wet well and are classified Class 1, Division 1, Group D as defined by NEC.
 b. Install all conduits and appurtenances in accordance with the requirements of Chapter 5 in NEC.
 c. Provide seal fittings for all conduits that enter or leave a hazardous location.

C. Connections to Equipment

1. Use double locknuts and bushing for all boxes, enclosures and cabinets located in dry areas.

2. Use watertight hub fittings for all boxes, enclosures and cabinets located below grade and in wet, damp or corrosive areas.

3. Provide rigid conduit connection where equipment is fixed and not subject to adjustment, mechanical movement or vibration. Provide union fittings to permit removal of equipment without cutting or breaking conduit.

4. Use liquidtight flexible conduit connection where equipment is subject to adjustment, mechanical movement or vibration.
5. Coat all threads in steel conduit runs with zinc dust in oil or other corrosion-preventive compound before making connections.

6. Coat all threads in aluminum conduit runs with graphite or other corrosion preventive compound.

3.3 CLEANING AND PAINTING

A. Shop Paint: Paint conduits meeting the requirements of Section 09900.

END OF SECTION
PART 1 GENERAL

1.1 SUMMARY

A. Section Includes: Requirements for providing all wires and cables rated at 600 volts and below for complete electrical systems as shown.

B. Related Work Specified In Other Sections Includes:
 1. Section 16050 - Basic Electrical Materials and Methods
 2. Section 16195 - Electrical Identification
 3. Section 16950 - Electrical Testing Requirements

1.2 REFERENCES

A. Codes and standards referred to in this Section are:
 1. ASTM B 3 - Standard Specifications for Soft or Annealed Copper Wire

1.3 SUBMITTALS

A. General: Provide all submittals, including the following, as specified in Division 1 and Section 16050.

B. Product Data and Information: Provide manufacturer's catalog data for each type of wire furnished.

1.4 QUALITY ASSURANCE

A. General: Provide wire in accordance with applicable IEEE and NEMA standards, meeting the requirements of the NEC and UL listed.

B. Tests: Provide cables factory tested prior to shipment in accordance with ICEA standards for the insulation specified.

1.5 DELIVERY, STORAGE AND HANDLING

A. General: Deliver, store and handle wire and cable in accordance with the manufacturer's instructions and as specified in Division 1.

B. Store cable reels on concrete or other hard surface or on 2x4 wood laggings.
PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Acceptable manufacturers are listed below. Other manufacturers of equivalent products may be submitted.

1. Wire and Cable
 a. American
 b. Southwire
 c. Rome

2. Instrumentation Cable
 a. Belden
 b. Dekoron
 c. Okonite

3. Multiconductor Cable
 a. Okonite
 b. Rome
 c. Southwire

4. Wire Connectors
 a. Thomas & Betts
 b. 3 M
 c. Ideal

5. Color Coding Marker
 a. Brady
 b. Thomas & Betts

2.2 MATERIALS

A. Conductors: Provide soft drawn or annealed copper conductors with 98 percent minimum conductivity, meeting requirements of ASTM B 3. Use stranded conductors except solid No. 12 and No. 10 AWG may be used in lighting fixture and convenience outlet wiring.

B. Insulation: Provide wires and cables with insulation as follows:

1. Power, control and lighting wiring
a. Single Conductor: Provide insulation as follows:

<table>
<thead>
<tr>
<th>Conductor Size</th>
<th>NEC Type</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nos. 14, 12 and 10 AWG</td>
<td>XHHW</td>
<td>Cross-linked Polyethylene</td>
</tr>
<tr>
<td>No. 8 AWG and Larger</td>
<td>RHW</td>
<td>Cross-linked Polyethylene</td>
</tr>
</tbody>
</table>

b. Multiconductor Cables: Insulate individual conductors with 15 mils of polyethylene or PVC and 4 mil nylon jacket. Cable wrap the cable conductor with type binder and an outer jacket not less than 45 mils of PVC. Use ICEA Method 1 for color coding wires.

2. Instrumentation Wiring: The use of manufacturers name and catalog number is for the purpose of establishing quality and general configuration designed.

a. Two conductor or single pair: Stranded No. 16 AWG wire, 600 volt polyethylene insulation, tinned copper drain wire, overlapped metalized tape overall shield providing 100 percent shield coverage and outer jacket of PVC. Belden Cat. No. 8719.

b. Three Conductor: Stranded No. 16 wire, 600 volt polyethylene insulation, tinned copper drain wire, overlapped metalized tape overall shield providing 100 percent shield coverage and outer jacket of PVC. Belden Cat. No. 8618.

c. Multiple Pairs or Triads: Provide individually shielded pairs or triad of stranded No. 16 AWG wire with overall shield. Insulate each wire for 600 volts with 15 mils of PVC and a 4 mil nylon jacket. Assemble pairs or triads with tinned copper drain wire and metalized tape shield providing 100 percent shield coverage. Cable pair or triad together with tinned copper drain wire and overall metalized tap shield.

C. Printed Data on Covering: Use wire and cable with the following information surface printed at regular intervals throughout the entire length.

1. Manufacturer or trade name.
2. Size of conductor.
3. Type of insulation.
4. Voltage classification.

2.3 WIRE CONNECTIONS AND CONNECTING DEVICES

A. Connectors for No. 10 AWG and Smaller: Use insulated compression type butt connectors.
B. Connectors for No. 8 AWG and Larger: Use UL, Inc. listed compression type tube connectors for parallel or butt splices. Provide companion preformed plastic insulating covers or tape to provide insulation equal to conductor insulation.

C. Miscellaneous Connectors: Use preinsulated spring connectors for lighting and receptacle splices and pigtails.

D. Solderless Lugs: Provide solderless terminal lugs for stranded and multiple solid conductors at connection to terminals or use UL listed crimp tool compression style lugs.

E. Control Wire Terminations: Provide spade lug or pressure type control conductor connection terminations for control wiring terminations. Make lug bolting at devices or bus bars with a flat washer, a Belleville washer and a locknut.

2.4 COLOR CODING

A. Use a vinyl impregnated cloth tape resistant to oil, dirt and heat for conductor color coding.

PART 3 EXECUTION

3.1 INSTALLATION

A. General: Swab new and existing conduits to be used to clear debris and remove moisture before conductor installation. Install conductors in raceways with no splices between boxes.

B. Pulling Equipment: Pull conductors using proper equipment without exceeding manufacturer’s recommendation for maximum pulling tension. Protect conductor insulation jacket at all times from twists, kinks, scrapes, punctures and other damage. Replace damaged conductors. Pull wires and cables into ducts and conduit without the use of lubricants, except where such use is necessary and approved by the cable manufacturer and the ENGINEER. Use UL listed lubricating compound compatible with the conductor insulated jacket and with the raceway.

Use lines of nylon or polypropylene, propelled by carbon dioxide, or compressed air, to snake or pull wire and cable into conduits. Do not use flat steel tapes or steel cables.

C. Conductor Support: Support conductors in vertical risers with woven grips to prevent loading on conductor connectors.

D. Seals: Provide a seal between the conductor and conduit for conduits entering buildings or from areas where the temperature change may cause condensation or moisture. Seal the conduits after the conductors are in place.
E. Identify all cables as specified in Section 16195.

F. Color Coded Tape: Apply color coding tape at all terminations and splices with overlapping turns for a minimum length of two inches, starting two inches back from the termination point. Provide color code tape in all boxes and manholes.

Provide color coding throughout the entire network for service, feeder, branch, control and low energy signal circuit conductors. Use the following color code for conductors.

COLOR CODING

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>PHASE A</th>
<th>PHASE B</th>
<th>PHASE C</th>
<th>NEUTRAL</th>
<th>GROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>208/120 three phase</td>
<td>Black</td>
<td>Red</td>
<td>Blue</td>
<td>White</td>
<td>Green</td>
</tr>
<tr>
<td>480/277 three phase</td>
<td>Brown</td>
<td>Yellow</td>
<td>Purple</td>
<td>Gray</td>
<td>Green</td>
</tr>
<tr>
<td>Control and low-energy signal</td>
<td>Orange</td>
<td>---</td>
<td>---</td>
<td>White</td>
<td>Green</td>
</tr>
<tr>
<td>Gas and Fire Detection Systems</td>
<td>Pink</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>Tan</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>dc circuits</td>
<td>Olive</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

G. Terminations: Leave a minimum of six inches of free conductor at each connected outlet and a minimum of nine inches at unconnected outlets.

H. NEC Requirements: Install wiring in accordance with applicable provisions of National Electrical Code, and as indicated.
I. Conductor Sizing: Size conductors in accordance with the NEC and the following:

1. Size for branch lighting circuits so that the greatest voltage drop between lighting panel and center of load does not exceed two percent at rated load.

2. Size conductors to limit the maximum conductor temperature to less than 75 degrees C, except where specifically stated otherwise.

3. Use minimum conductor sizes as follows:
 a. Power and lighting branch circuits, No. 12 AWG.
 b. 120-volt control circuits, No. 14 AWG.
 c. Instrumentation and signal wiring, 2 or 3 conductors No. 16 AWG stranded shielded.

4. Size conductors as shown or as required by the actual load to be served, whichever is larger.

J. Splicing: Pull cables from building or structure to building or structure with no splice in the duct systems.

K. Hazardous Areas: Seal all conduits in hazardous areas before admission of hazardous gases to the area.

L. Accuracy of Information: The number and sizes of wires and conduits indicated are for guidance only and are not necessarily the correct number and sizes necessary for actual equipment installed. Install as many wires and conduits as required and necessary for a complete electrical system, and provide adequately for the equipment actually installed.

3.2 CONDUCTOR IDENTIFICATION

A. Labeling: Label each wire at both termination points and at each splice point in junction boxes. Carry individual conductor or circuit identification throughout, with circuit numbers or other identification clearly stamped on terminal boards and printed on directory cards in distribution cabinets and panelboards.

B. Identification: Identify each wire in junction boxes and cabinets where the total number of control and signal wires is three or more and no terminal board is provided, by means of plastic slip on wire marker.

C. Plastic Tags: In manholes, identify each wire by laminated plastic tag located so it can be easily seen.
D. Color Coordination: Connect circuit conductors of the same color to the same phase throughout the installation.

3.3 WIRE AND CABLE CONNECTIONS TO EQUIPMENT

A. Provide electrical connections to all equipment in strict accordance with the manufacturer's approved wiring diagrams, the Plans, or as approved. Repair or replace any damaged equipment resulting from erroneous connections.

3.4 CONNECTOR AND TERMINAL LUG INSTALLATION

A. UL Requirements: Install all connectors and terminal lugs in accordance with UL requirements and manufacturer's recommendations.

3.5 QUALITY ASSURANCE

A. Test the following 600-volt wires and cables after installation but before final connections are made up:

1. All secondary feeders from the substation transformers.
2. All feeders between and from the low voltage switchgear assemblies.
3. All feeders from motor control centers to motors 30 hp and larger.
4. All feeders from variable speed drive units.
5. All feeders from motor control centers, to lighting panels and dry-type transformers.

For the above listed cables, apply a test voltage of 1,500 volts ac for a period of 1 minute between all conductors in the same conduit, and between each conductor and ground.

B. Make all tests and submit certified test results. Replace any cables that fail the tests.

C. Perform continuity test to demonstrate proper cable connection.

END OF SECTION
SECTION 16150 - ELECTRICAL REQUIREMENTS FOR SHOP-ASSEMBLED EQUIPMENT

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes: Requirements for providing, installing and testing shop-assembled equipment as indicated, in accordance with the Contract Documents. Shop-assembled equipment Control Panels and other items are specified under the driven equipment sections and may require external field connection to ancillary devices and other system components for interlocks and alarms. Provide all field wiring as required by the system and equipment specified under the driven equipment sections. This field wiring may not be specified or shown. This equipment includes but is not limited to the following:

Pump System Controls

B. Related Work Specified in Other Sections:

1. Section 03310 - Cast-in-Place Concrete
2. Section 09900 - Painting
3. Section 16050 - Basic Electrical Materials and Methods
4. Section 16110 - Electrical Raceway Systems
5. Section 16120 - Wires and Cables - 600 Volts and Below
6. Section 16140 - Wiring Devices
8. Section 16195 - Electrical Identification
9. Section 16450 - Grounding

1.2 REFERENCES

A. Codes and standards referred to in this Section are:

1. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum)
2. UL 486A - Wire Connectors and Soldering Lugs for Use with Copper Conductors.

1.3 SYSTEM DESCRIPTION

A. Design Requirements: Design the Shop Assembled equipment using the Components and Appurtenances meeting the requirements specified.

1.4 SUBMITTALS

A. General: Provide all submittals, including the following, as specified in Division 1.
B. Product Data and Information: Provide manufacturer's data on all equipment and devices in the assembly, including voltages, number of phases, current ratings, capacities and other relevant data.

C. Shop Drawings: Provide shop drawings for the shop-assembled equipment, including the following:

1. Layout drawings of the assembly showing accurately scaled basic equipment sections, auxiliary compartments and combination sections. Show special relationships of assemblies to associated equipment, including plan and front views of the equipment. Provide a device summary.

2. Wiring diagrams for assemblies showing connections to electrical power. Clearly differentiate between shop-installed portions of wiring and field installed portions.

3. Provide construction drawings for equipment requiring field assembly. Clearly differentiate between shop-assembled portions and field assembled portions.

D. Quality Control: Provide manufacturer's test reports and certified performance records of all equipment installed. Provide field test reports after equipment is installed.

1.5 QUALITY ASSURANCE

A. Codes: Comply with local codes and all other applicable codes.

B. Regulatory Requirements: Comply with applicable Regulatory Agency requirements.

1.6 DELIVERY, STORAGE AND HANDLING

A. Deliver, store and handle all products and materials as specified in Division 1.

PART 2 PRODUCTS

2.1 FABRICATION

A. General: Provide shop-assembled equipment as standard products manufactured by companies regularly engaged in the manufacture of such equipment.

B. Factory Assembled Requirements: Provide control panels for shop-assembled equipment as complete factory assembled units that require only external connections for installation including main disconnect and all electrical features necessary for the proper operation of the units.
C. Controls:

1. Motor 1/2 Hp and Larger:
 a. Design motors for 480-volt, 3-phase, 60-hertz operation, with all controls at 115 volts or less.
 b. Provide a combination circuit breaker along with all required control transformers, relays, timers, heaters and other necessary incidentals to form a complete functioning unit.
 c. Provide NEMA size 1 or larger Soft Start Starters.

3. Provide all controls and equipment as specified in Section 16482.

D. Control Components: Install principal control components in NEMA 250 rated enclosures as follows:

 NEMA 4X – Watertight and corrosion-resistant stainless steel external hardware. Provide all external operators made of the same materials as that of the enclosure.

E. Miscellaneous Controls:

1. Furnish float switches, pressure switches, limit switches, thermostats and other auxiliary control devices to satisfy the intended service.

2. Rate contacts at 10-amperes, 120 volts, 60-hertz ac, unless otherwise specified.

3. Provide Limit Switches as required.

PART 2 EXECUTION

2.6 INSTALLATION

A. General: Install shop-assembled equipment as indicated, in accordance with manufacturer's written instructions.

B. Coordination: Coordinate cabling and wiring as necessary to interface installation of shop-assembled equipment.

C. Torque Requirements: Tighten electrical connectors and terminals, including screws and bolts, in accordance with equipment manufacturer's published torque tightening values for equipment connectors. Where manufacturer's torque requirements are not indicated, tighten connectors and terminals in accordance with UL Standard 486A.

Grounding Connections: Make equipment grounding connections for the shop-assembled equipment as specified and shown. Tighten connections in accordance with UL Standard 486A to assure permanent and effective grounding.
E. Adjustments: Make all necessary adjustments to the equipment to provide complete and satisfactory operation upon completion of the Contract.

2.7 CLEANING AND PAINTING

A. Shop Painting: Paint the shop-assembled equipment enclosures as specified in Section 09900.

B. Field Painting: Clean and touch up scratched and marred surfaces to match original finish.

END OF SECTION
PART 1 GENERAL

1.1 SUMMARY

A. Section Includes: Requirements for providing, installing and testing the 480-volt adjustable frequency drives. Provide drives in individual free standing enclosures, wall mounted enclosures, or incorporated into motor control centers, as shown. Furnish harmonic studies as specified.

B. Related Work Specified in Other Sections Includes:

1. Section 09900 - Painting
2. Section 16050 - Basic Electrical Materials and Methods
3. Section 16120 - Wires and Cables - 600 Volts and Below
4. Section 16150 - Electrical Requirements For Shop-Assembled Equipment
5. Section 16195 - Electrical Identification
6. Section 16450 - Grounding
7. Section 16482 - Motor Control Centers
8. Section 16950 - Electrical Testing Requirements

1.2 REFERENCES

A. Codes and standards referred to in this Section are:

1. NEMA ICS 1 - General Standards for Industrial Control and Systems
2. NEMA ICS 2 - Industrial Control Devices, Controllers and Assemblies
3. NEMA ICS 3 - Industrial Systems
5. NEMA 250 - Enclosures for Electrical Equipment
6. NFPA 70 - National Electrical Code
7. IEEE 85 - Test Procedure for Airborne Sound Measurements on Rotating Electric Machinery
8. IEEE 519 - Guide for Harmonic Control and Reactive Compensation of Static Power Converters
1.3 SYSTEM DESCRIPTION

A. Design Requirements:

1. Provide adjustable frequency drives to vary the speed of NEMA standard, 3-phase, 460-volt, induction motors and driven equipment by varying the frequency and voltage applied to the motors.

2. Design adjustable frequency drives to fit in the space shown.

B. Torque Output: Provide variable torque or constant torque output drives as required by driven equipment.

C. Performance Requirements: Provide adjustable frequency drives to meet the following requirements:

1. Operate at less than five percent total harmonic distortion (IEEE Standard 519) to the 480-volt, 3-phase supply voltage for the drive as measured at the drive line terminals.

2. Operate at a minimum efficiency of 95 percent at rated load.

3. Operate from a 480-volt, 3-phase, 60-hertz supply with a voltage variation of plus 10-percent or minus 20-percent and a frequency variation of plus or minus 2-hertz.

4. Operate an induction motor as specified, including a high efficiency, high power factor premium duty motor, with no detriment to motor life.

5. Operate an induction motor without exceeding a motor sound and power level of 96-decibels, A-weighted, when measured in accordance with IEEE 85.

6. Operate under the following ambient conditions:
 a. Ambient Temperature: 0 to 40 degrees C
 b. Humidity: 0 to 95 percent

1.4 SUBMITTALS

A. General: Provide all submittals, including the following, as specified in Division 1 and Section 16050.

B. Product Data and Information: Submit catalog data including rating and descriptive literature of all components and systems.

C. Shop Drawings: Submit the following shop drawings:
1. Bill of materials including manufacturers name and catalog number
2. Outline drawings showing dimensions, arrangement, elevations, identification of components and nameplate schedule for all units
3. Interconnection wiring diagrams
4. Individual schematic control diagrams for each unit
5. One line diagrams
6. Obtain and enter full performance data for all motors shown
7. Certification that the adjustable frequency drives are compatible with the motors and the equipment loads to be driven

D. System harmonic distortion study:
1. Obtain data on utility services, plant loads and plant operation.
2. Prepare a harmonic distortion study of plant electrical system to determine voltage and current harmonics at various adjustable speed drive speed and load settings.
3. Design harmonic filtering system to maintain electrical disturbances to the drive supply below the requirements established by IEEE 519.
4. Include analysis of all data with recommendation.

E. Quality Control: Submit test reports, certificates of inspection and manufacturer's instructions.

F. Operations and Maintenance Manuals: Provide operations and maintenance manuals as specified in Division 1.

1.5 QUALITY ASSURANCE

A. Codes: Provide all adjustable frequency drives manufactured in accordance with referenced standards.

B. Provide a UL Inc. Label or certification of listing by C.S.A. or other recognized testing organization for each adjustable frequency drive.

C. Manufacture and install each adjustable frequency drive in accordance with the NEC and local codes.

1.6 DELIVERY, STORAGE, AND HANDLING
A. General: Deliver, store and handle all products and materials as specified in Division 1 and as follows:

B. Shipping and Packing: Rigidly brace and protect against weather, damage, and undue strain, all structures, equipment and materials.

C. Storage and Protection: Furnish clean storage facilities for all equipment delivered but not installed. Provide conditioned air for storage facilities in accordance with the equipment manufacturer's recommendations.

D. Spare Parts: Deliver spare parts at the same time as pertaining equipment. Deliver the spare parts to the OWNER after completion of the work.

1.7 SPARE PARTS

A. General: Furnish the following spare parts per each group of similar sized units.

1. All parts recommended by the manufacturer in published literature as spare parts. As a minimum, provide the following:
 a. Six of all sizes and types of power and control fuses
 b. Six LED displays of each color
 c. One speed indicator meter relay
 d. Two of each type of push button and selector switch used
 e. Two printed circuit boards of each type used
 f. Four SCR's or other type solid state switching device of each type used
 g. Four commutating capacitors of each size used
 h. Four diodes of each type used
 i. Four transistors, gate turn off thyristors or SCR's of each type used

B. Packaging: Package spare parts in containers bearing labels and identify all spare parts for reordering. Deliver spare parts in original factory packages.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Acceptable manufacturers are listed below. Other manufacturers of equivalent products may be submitted.
1. General Electric
2. Robicon
3. Square D
4. Westinghouse Electric

2.2 DESIGN

A. Input Disconnect: Furnish an input circuit breaker with an interrupting rating of 65,000 rms symmetrical amperes.

B. Input Reactor: Furnish input reactor or isolation transformer, if required, as determined by system harmonic distortion analysis.

C. Converter Section: Design input section to convert 480-volts, 60-hertz, 3-phase input to a fixed dc with a bridged rectifier.

D. Filter Sections: Furnish dc link reactor and filter capacitors.

E. Inverter Section: Design adjustable frequency drive inverter section to convert the fixed dc voltage to an adjustable frequency output utilizing a (pulse width modulation), (current source) or (voltage source) inverter. Maintain a constant volts per hertz ratio on the output with voltage boost for startup as required.

F. Control Devices: Include door mounted control and monitoring devices for each drive as follows:
 1. Start push button
 2. Stop push button
 3. "Local-Remote" control selection
 4. Speed control potentiometer
 5. Frequency meter with hertz and 0-100 percent scales
 6. Output ammeter
 7. Elapsed time meter
 8. Diagnostics package with fault indication and reset push button

G. Control Features: Design a control system for each drive to allow the following functions:
 1. Remote, isolated 4-20 ma speed control input
 2. Isolated 4-20 ma speed output
 3. Alarm outputs
 4. ON/OFF status output
 5. Additional features and controls as specified with the driven equipment

H. Internal Control Adjustments: Include the following control adjustments for each drive:
1. Acceleration time, 4 to 60 seconds
2. Deceleration time, 4 to 60 seconds
3. Minimum speed limit
4. Maximum speed limit
5. Inverter current limit
6. Supply undervoltage trip

I. Protection Features: Provide the following drive protection features:

1. Input line current limiting fuses rated 200,000 rms symmetrical amperes short circuit current.
2. Electronic overcurrent protection for instantaneous overload
3. AC input line undervoltage protection, adjustable from 60-100 percent nominal voltage with time delay adjustment and low speed override.
4. Overfrequency protection
5. Phase loss protection
6. DC overvoltage protection
7. Logic supply voltage low level protection
8. Line-to-line and line-to-ground output short circuit protection
9. Line-to-line and line-to-ground surge arresters sized for 480-volt 3-phase grounded wye system
10. Overload capability of 110% of the motor FLA based on the NEC ratings for 60 seconds
11. Control circuit fuses
12. Overtemperature protection
13. Diagnostics module to indicate protection trip conditions

2.3 COMPONENTS

A. General: Furnish circuit breakers, fuses, transformers, push buttons, switches, indicating lights, relays and timers as specified in Section 16482.

B. Power Solid State Components: Furnish power solid state switching components with a one minute current rating greater than 110 percent of rated current for variable torque drives or 150 percent of rated current for constant torque drives.
C. Programmable Controller: Provide programmable controller as specified in Section Instrumentation.

D. Control Power Transformer: Furnish a constant voltage control power transformer to maintain control power with supply voltage variations from 70-110 percent nominal.

E. Printed Circuit Boards: Apply a clear conformal coating of acrylic to all printed circuit boards.

2.4 ENCLOSURES

A. Furnish adjustable frequency drive enclosures as specified in Section 16150 and Section 16482.

2.5 SOURCE QUALITY CONTROL

A. Shop Test: Shop test each adjustable frequency drive in accordance with IEEE and NEMA standards, including high potential tests and other standard tests for that particular class of equipment.

B. Operational Tests: After the equipment has been completely assembled, perform operational test to determine operating conditions and circuit continuity.

PART 3 EXECUTION

3.1 INSTALLATION

A. General: Install all equipment in accordance with the manufacturer's recommendations and approved shop drawings and as specified in Division 1.

B. Protective Adjustments: Set all circuit breakers per the approved short circuit and coordination study.

C. Operational Adjustments: Set all operational devices for proper system operation.

D. Cable Connections: Terminate and label all field wiring per approved drawings.

3.2 FIELD QUALITY CONTROL

A. Inspections: Inspect, adjust and check the installation for physical alignment, cable terminations and ventilation.

B. Tests: Perform the following field tests:
1. Close and open each circuit breaker to test operation

2. When site conditions permit, energize and de-energize each equipment item served by each drive, testing the complete control sequence of each item including acceleration and deceleration over complete operating range.

3. Operate each adjustable frequency drive with driven equipment at full load and test for hot spots.

Test Reports: Furnish detailed test reports of all tests indicating test performed, discrepancies found, and corrective action taken.

C. Manufacturers Field Services Representative: Provide the services of a factory-trained service engineer, specifically trained on the adjustable frequency equipment to assist in installation, start-up, testing, calibration and placement into operation.

1. Provide operation and maintenance training for total of two eight-hour days for each type of drive furnished, excluding travel time.

2. Provide a service engineer at the jobsite as often as necessary until all problems are corrected and the equipment installation and operation are satisfactory.

3.3 CLEANING AND PAINTING

A. Shop Painting: Paint the adjustable frequency drive equipment as specified in Section 09900.

B. Field Painting: Furnish three 12-ounce spray cans of the final finish for touch-up. Touch-up scratched and marred surfaces to meet the requirements of Section 09900.

END OF SECTION
PART 1 GENERAL

1.1 SUMMARY

A. Section Includes: Requirements for providing materials for the identification of electrical equipment, components, conduits, cables and wiring.

B. Related Work Specified in Other Sections Includes:

1. Section 09900 - Painting
2. Section 16050 - Basic Electrical Materials and Methods

0.1 SUBMITTALS

A. General: Provide all submittals, including the following, as specified in Division 1.

B. Product Data and Information: Provide manufacturer's catalog data for nameplates, labels and markers.

1. Provide manufacturer's instructions indicating application conditions and limitations of use; and storage, handling, protection, examination and installation of product.

C. CONTRACTOR's Record Drawings: Provide CONTRACTOR's record drawings accurately showing actual location of markers for underground ducts, handholes and manholes, at completion of the Project.

0.2 DELIVERY, STORAGE AND HANDLING

A. Deliver, store and handle all products and materials as specified in Division 1.

PART 1 PRODUCTS

1.1 MATERIALS AND COMPONENTS

A. General: Provide identification materials listed and classified by UL or tested by an acceptable Electrical Testing Company certifying the equivalence of the materials to UL listing requirements and OSHA approved.

B. Laminated Plastic Nameplates: Provide engraved three layer laminated plastic nameplates with black letters on white background and fastened with corrosion-resistant screws. Use of mounting cement is not acceptable.
1. Provide nameplates with 1-inch high lettering for switchgears, switchboards, motor control centers, control panels, relay panels, contactor panels, panelboards, and similarly grouped equipment, transformers and disconnect switches.

2. Provide nameplates with 1/2-inch high lettering for individual components of a group such as main breakers, switchgear units, switchboard units, motor control center units and similar devices.

3. Provide nameplates with 1/4-inch high lettering for remote motor controllers, control stations, relays and similar equipment.

4. Provide nameplates for each motor identifying service or function and lettering of an appropriate size to suit each motor.

5. Provide approved laminated directories of circuits with typewritten designations of each branch circuit in each panelboard.

6. Provide smaller lettering for a neat, legible nameplate where the amount of lettering causes excessively large nameplates.

C. Wire Markers: Identify wire bundles and each individual wire.

1. Provide a brass or rigid fiber identifying tag engraved with the conduit number where conduits enter motor control centers, switchgear, control panels, terminal boxes and the like. Attach tags to wire bundles with nylon self locking "Ty-Raps".

2. Provide engraved PVC split sleeve wire markers on each wire at all termination points. Engraving to include conduit number prefix and wire number suffix. Relate wire numbers to termination numbers.

3. Include wire numbers on all wiring and schematic diagrams and on all record drawings.

D. Conduit Marking Paint: Not required.

E. Underground Warning Tape: Provide 4-inch wide detectable type plastic tape in red (electric) and orange (communications) colors with suitable warning describing the type of buried electrical lines.

PART 2 EXECUTION

2.1 PREPARATION

A. Surface Preparation: Degrease and clean surfaces to receive nameplates, labels and marking paint.
2.2 INSTALLATION

A. General: Install nameplates on the front of equipment, parallel to the equipment lines and secured with corrosion resistant screws.

1. Install laminated nameplates identifying:
 a. Each electrical equipment enclosure
 b. Individual equipment and devices

B. Wire Markers: Install wire markers on each conductor at panelboard gutters, pull boxes, terminal boxes, outlet and junction boxes and at load connection identifying:

1. On power and lighting circuits - branch circuit or feeder number indicated on drawings
2. On control circuits - control wire number on schematic and interconnection diagram on drawings

C. Conduit Markers: Paint colored marking bands on each conduit longer than 6 feet at intervals of 20 feet on center to identify the wiring voltage system contained in the conduit.

D. Underground Warning Tape: Install one underground warning tape for each trench up to 18 inches wide. For trenches wider than 18 inches provide two underground warning tapes, one at each edge of the trench. Place the tape or tapes 6 inches below the finished grade.

END OF SECTION
SECTION 16450 - GROUNDING

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes: Requirements for providing a complete grounding system as specified and shown. Grounding includes but is not limited to: motor control centers, electric equipment enclosures, transformers, unit substations, switchgears, switchboards, ground grid systems with grounding rods, grounding conductors, bonding jumpers, grounded conductors, water pipe connections, and building and miscellaneous structure metal frames.

B. Related Work Specified in Other Sections Includes:

1. Section 16050 - Basic Electrical Materials and Methods
2. Section 16110 - Electrical Raceway Systems
3. Section 16120 - Wires and Cables - 600 Volts and Below

1.2 REFERENCES

A. Codes and Standards: The following codes and standards are referred to in this Section:

1. NEC - National Electrical Code (Latest Edition)

1.3 SUBMITTALS

A. General: Provide all submittals, including the following, as specified in Division 1.

B. Product Data and Information: Provide manufacturer's catalog data for the following:

1. Grounding and grounded conductors
2. Grounding connectors, clamps and bushings
3. Grounding rods
4. Bonding jumpers

C. Shop Drawings: Provide shop drawings showing the locations and length of grounding rods. Label the size and material used for grounding rods. Provide details pertaining to grounding electrode conductors, grounding and grounded conductors, grounding connections and the ground grid for buildings, structures, lighting units, manholes and handholes.
D. Quality Control: Provide a field report of the system ground impedance test results.

1.4 QUALITY ASSURANCE

A. Construct a complete grounding system in accordance with applicable ANSI, a IEEE standards and the NEC and local codes.

1.5 DELIVERY, STORAGE AND HANDLING

A. Deliver, store and handle all products and materials as specified in Division 1 (and as follows:)

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Acceptable manufacturers are listed below. Other manufacturers of equivalent products may be submitted.

1. Grounding and Grounded Conductors
 a. American Insulated Wire Corporation
 b. Rome Cable

2. Grounding Connectors, Clamps and Bushings
 a. Burndy Corporation
 b. O-Z/Gedner Company
 c. Ezico Products
 d. Thomas and Betts

3. Grounding Rods
 a. Harger Lightning Protection, Inc.
 b. Thomson Industries, Inc.
 c. Carolina Galvanizing Utility Products Division
 d. Erico International Corp.

2.2 MATERIALS

A. General: Provide conductor sizes as shown or required.

B. Materials: Use conductors in accordance with the requirements specified in Section 16120.

C. Bare conductors: Use bare copper conductor where buried in earth, embedded in concrete or exposed.
D. Insulated Conductors: Use copper conductor with green color insulation rated at 600 volts where installed in conduits or other enclosed raceways.

2.3 CONNECTORS

A. Grounding Clamps and Bolted Connectors: Use grounding clamps and bolted connectors suitable for devices or cables being connected.

B. Welding: Use the exothermic welding process for buried, concealed and accessible connections to structural members, ground rods, and case grounds. Clean and paint welds embedded in the ground or encased in concrete with asphalt base paint.

C. Bolted Connectors: Use bolted connectors for grounding of ground buses and equipment.

D. Pipe Grounding: Use copper, brass, or bronze grounding clamps for grounding pipes. Do not use strap type clamps for this purpose.

E. Grounding Bushings: Provide grounding bushings for conduits where conduits are not effectively grounded by firm contact to the grounded enclosure.

2.4 GROUNDING RODS

A. Length and Size: Provide grounding rods 3/4-inch in diameter and 10 feet long.

B. Grounding Rod Material: Stainless steel.

PART 3 EXECUTION

3.1 INSTALLATION

A. General: Install conductors to preclude exposure to physical damage. Install connections firm and tight. Arrange conductors and connectors without placing strain on the connections. Bury equipment grounding conductors as shown, or at a minimum of 12 inches below grade. Bring loops or taps up for connection to equipment or other items to be grounded.

1. Install an insulated grounding conductor in all conduits.

2. When raceways are used to contain and protect grounding conductors, install in accordance with Section 16110 and NEC.
3. Where conductors are installed in nonmetallic raceway, install the grounding conductor in addition to the neutral wire, for system sized in accordance with NEC or as scheduled.

4. Perform exothermic welding with properly sized molds.

B. Grounding Rod Installation:

1. Install grounding rods as shown with the top of the rod a minimum of 12 inches below grade.

2. Drive grounding rods into permanently moist soil.

3. Provide additional ground rod sections as required to reach permanently moist soil.

4. Install cast iron junction box without bottom for access to grounding rod and conductor where shown.

C. Equipment Grounding: Ground each piece of electrical equipment using a conductor in the raceway feeding the equipment in accordance with NEC.

1. Unless specified otherwise, connect transformer enclosures and neutrals to the grounding system. Connect the neutral ground connection at the transformer terminal. Provide two separate, independent, diagonally opposite connections for power transformers so removal of one connection will not impair continuity of the other. Make the connection from the ground grid to the ground bus and enclosures of switchboards, switchgears and motor control centers, lighting and distribution panelboards, control, relay and instrumentation panels.

D. Grounding Conductors: Connect the grounding conductor between the equipment and the grounding system. Where a ground bar is furnished with the panelboard, connect the grounding conductor to the bar.

E. Miscellaneous Grounding: Provide grounding for the following:

1. Ground receptacles and switches and their metal plates through positive ground connection to the yoke/strap, outlet box and grounding system grounding wire installed in the conduit.

2. Ground racks, supports, frames, covers and metal parts in manholes or handholes, controllers, motor frames, surge capacitors, arrestors, lighting fixtures, metal structures, exposed noncurrent carrying metal, mechanical equipment, hoist beams, cranes and similar items.

3.2 FIELD QUALITY CONTROL
A. Tests: Conduct a witnessed test to determine the ground impedance for the entire system using a ground loop impedance tester. Provide a maximum impedance of 2 ohms at any point of the test. Add additional grounding rods if necessary to meet this requirement.

END OF SECTION
DIVISION 16 - ELECTRICAL

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC ELECTRICAL MATERIALS AND METHODS</td>
<td>16050</td>
</tr>
<tr>
<td>MISCELLANEOUS EQUIPMENT</td>
<td>16108</td>
</tr>
<tr>
<td>ELECTRICAL RACEWAY SYSTEMS</td>
<td>16110</td>
</tr>
<tr>
<td>WIRE AND CABLE - 600 VOLTS AND BELOW</td>
<td>16120</td>
</tr>
<tr>
<td>ELECTRICAL REQUIREMENTS FOR SHOP ASSEMBLED EQUIPMENT</td>
<td>16150</td>
</tr>
<tr>
<td>ADJUSTABLE FREQUENCY DRIVES</td>
<td>16170</td>
</tr>
<tr>
<td>ELECTRICAL IDENTIFICATION</td>
<td>16195</td>
</tr>
<tr>
<td>GROUNDING</td>
<td>16450</td>
</tr>
</tbody>
</table>

DIVISION 23 – MECHANICAL

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT</td>
<td>230513</td>
</tr>
<tr>
<td>SLEEVES AND SLEEVE SEALS FOR HVAC PIPING</td>
<td>230517</td>
</tr>
<tr>
<td>GENERAL-DUTY VALVES FOR HVAC PIPING</td>
<td>230523</td>
</tr>
<tr>
<td>HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT</td>
<td>230529</td>
</tr>
<tr>
<td>TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
<td>230593</td>
</tr>
<tr>
<td>DUCT INSULATION</td>
<td>230713</td>
</tr>
<tr>
<td>HVAC PIPING INSULATION</td>
<td>230719</td>
</tr>
<tr>
<td>HVAC INSTRUMENTATION AND CONTROLS</td>
<td>230900</td>
</tr>
<tr>
<td>HYDRONIC PIPING</td>
<td>232113</td>
</tr>
<tr>
<td>HYDRONIC PUMPS</td>
<td>232123</td>
</tr>
<tr>
<td>HVAC WATER TREATMENT</td>
<td>232500</td>
</tr>
<tr>
<td>METAL DUCTS</td>
<td>233113</td>
</tr>
<tr>
<td>AIR TERMINAL UNITS</td>
<td>233600</td>
</tr>
<tr>
<td>WATER-TUBE BOILERS</td>
<td>235233</td>
</tr>
<tr>
<td>AIR COOLED WATER CHILLERS</td>
<td>236423</td>
</tr>
</tbody>
</table>
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.
D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F.

I. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
C. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubbe interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating. Stainless steel of length required to secure pressure plates to sealing elements.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.

2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

2. Concrete Slabs above Grade:

3. Interior Partitions:

END OF SECTION 230517
SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.
 4. Bronze swing check valves.
B. Related Sections:
 1. Section 230553 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of valve indicated.

1.3 QUALITY ASSURANCE
A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
B. ASME Compliance: ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES
A. Refer to HVAC valve schedule articles for applications of valves.
B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
C. Valve Sizes: Same as upstream piping unless otherwise indicated.
D. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 8 (DN 200) and larger.
 2. Handwheel: For valves other than quarter-turn types.
3. Handlever: For quarter-turn valves NPS 6 (DN 150) and smaller.
4. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.

E. Valves in Insulated Piping: With 2-inch (50-mm) stem extensions and the following features:

1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:

1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Solder Joint: With sockets according to ASME B16.18.
3. Threaded: With threads according to ASME B1.20.1.

2.2 BRASS BALL VALVES

A. One-Piece, Reduced-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Kitz Corporation.

2. Description:
 b. CWP Rating: 400 psig (2760 kPa).
 c. Body Design: One piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Brass.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

B. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. DynaQuip Controls.
 d. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
International Trade Center HVAC Renovation

e. Hammond Valve.
f. Kitz Corporation.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Red-White Valve Corporation.

2. Description:

b. SWP Rating: 150 psig (1035 kPa).
c. CWP Rating: 600 psig (4140 kPa).
d. Body Design: Two piece.
e. Body Material: Forged brass.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Brass.
i. Ball: Chrome-plated brass.
j. Port: Full.

C. Two-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Hammond Valve.
d. Milwaukee Valve Company.

2. Description:

b. SWP Rating: 150 psig (1035 kPa).
c. CWP Rating: 600 psig (4140 kPa).
d. Body Design: Two piece.
e. Body Material: Forged brass.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Stainless steel.
i. Ball: Stainless steel, vented.
j. Port: Full.

D. Two-Piece, Regular-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

a. Hammond Valve.
b. Legend Valve.
c. Milwaukee Valve Company.

2. Description:

 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Regular.

2.3 BRONZE BALL VALVES

A. One-Piece, Reduced-Port, Bronze Ball Valves with Bronze Trim:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. NIBCO INC.

 2. Description:

 b. CWP Rating: 400 psig (2760 kPa).
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Bronze.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

B. One-Piece, Reduced-Port, Bronze Ball Valves with Stainless-Steel Trim:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 b. NIBCO INC.

 2. Description:
b. CWP Rating: 600 psig (4140 kPa).
c. Body Design: One piece.
d. Body Material: Bronze.
e. Ends: Threaded.
f. Seats: PTFE or TFE.
g. Stem: Stainless steel.
h. Ball: Stainless steel, vented.
i. Port: Reduced.

C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

D. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. **Description:**

a. **Standard:** MSS SP-110.

b. **SWP Rating:** 150 psig (1035 kPa).

c. **CWP Rating:** 600 psig (4140 kPa).

d. **Body Design:** Two piece.

e. **Body Material:** Bronze.

f. **Ends:** Threaded.

g. **Seats:** PTFE or TFE.

h. **Stem:** Stainless steel.

i. **Ball:** Stainless steel, vented.

j. **Port:** Full.

E. **Two-Piece, Regular-Port, Bronze Ball Valves with Bronze Trim:**

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. **American Valve, Inc.**

b. **Conbraco Industries, Inc.; Apollo Valves.**

c. **Crane Co.; Crane Valve Group; Jenkins Valves.**

d. **Crane Co.; Crane Valve Group; Stockham Division.**

e. **Hammond Valve.**

f. **Lance Valves; a division of Advanced Thermal Systems, Inc.**

g. **Milwaukee Valve Company.**

h. **NIBCO INC.**

2. **Description:**

 a. **Standard:** MSS SP-110.

b. **SWP Rating:** 150 psig (1035 kPa).

c. **CWP Rating:** 600 psig (4140 kPa).

d. **Body Design:** Two piece.

e. **Body Material:** Bronze.

f. **Ends:** Threaded.

g. **Seats:** PTFE or TFE.

h. **Stem:** Bronze.

i. **Ball:** Chrome-plated brass.

j. **Port:** Regular.

2.4 **IRON, SINGLE-FLANGE BUTTERFLY VALVES**

A. **Class 125, Bronze Swing Check Valves with Bronze Disc:**

1. **Manufacturers:** Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:

 a. **American Valve, Inc.**
b. Crane Co.; Crane Valve Group; Crane Valves.
c. Crane Co.; Crane Valve Group; Jenkins Valves.
d. Crane Co.; Crane Valve Group; Stockham Division.
e. Hammond Valve.
f. Kitz Corporation.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Powell Valves.
j. Red-White Valve Corporation.
k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
l. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 200 psig (1380 kPa).
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: Bronze.

B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Kitz Corporation.
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Red-White Valve Corporation.
i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-80, Type 4.
b. CWP Rating: 200 psig (1380 kPa).
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: PTFE or TFE.

2.5 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammel Valve.
 e. Kitz Corporation.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Sure Flow Equipment Inc.
 l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 m. Zy-Tech Global Industries, Inc.

2. **Description:**

 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12 (DN 65 to DN 300), CWP Rating: 200 psig (1380 kPa).
 c. NPS 14 to NPS 24 (DN 350 to DN 600), CWP Rating: 150 psig (1035 kPa).
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Bronze.
 h. Gasket: Asbestos free.

B. **Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:**

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.

2. **Description:**

 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12 (DN 65 to DN 300), CWP Rating: 200 psig (1380 kPa).
 c. NPS 14 to NPS 24 (DN 350 to DN 600), CWP Rating: 150 psig (1035 kPa).
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Composition.
 h. Seat Ring: Bronze.
 i. Disc Holder: Bronze.
 j. Disc: PTFE or TFE.
 k. Gasket: Asbestos free.
2.6 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. NIBCO INC.

2. Description:

 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12 (DN 65 to DN 300), CWP Rating: 200 psig (1380 kPa).
 c. NPS 14 to NPS 24 (DN 350 to DN 600), CWP Rating: 150 psig (1035 kPa).
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Bronze.
 h. Gasket: Asbestos free.
 i. Closure Control: Factory-installed, exterior lever and spring.

B. Class 125, Iron Swing Check Valves with Lever and Weight-Closure Control:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12 (DN 65 to DN 300), CWP Rating: 200 psig (1380 kPa).
 c. NPS 14 to NPS 24 (DN 350 to DN 600), CWP Rating: 150 psig (1035 kPa).
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Bronze.
 h. Gasket: Asbestos free.
 i. Closure Control: Factory-installed, exterior lever and weight.
2.7 BRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.

2. Description:

 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig (1380 kPa).
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

B. Class 125, RS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.

2. Description:
a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 200 psig (1380 kPa).
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

2.8 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Legend Valve.
 h. Milwaukee Valve Company.
 i. NIBCO INC.
 j. Powell Valves.
 k. Red-White Valve Corporation.
 l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 m. Zy-Tech Global Industries, Inc.

2. Description:

 a. Standard: MSS SP-70, Type I.
 b. NPS 2-1/2 to NPS 12 (DN 65 to DN 300), CWP Rating: 200 psig (1380 kPa).
 c. NPS 14 to NPS 24 (DN 350 to DN 600), CWP Rating: 150 psig (1035 kPa).
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Disc: Solid wedge.
 h. Packing and Gasket: Asbestos free.

B. Class 125, OS&Y, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Flo Fab Inc.
e. Hammond Valve.
f. Kitz Corporation.
g. Legend Valve.
h. Milwaukee Valve Company.
i. NIBCO INC.
j. Powell Valves.
k. Red-White Valve Corporation.
l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
m. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-70, Type I.
b. NPS 2-1/2 to NPS 12 (DN 65 to DN 300), CWP Rating: 200 psig (1380 kPa).
c. NPS 14 to NPS 24 (DN 350 to DN 600), CWP Rating: 150 psig (1035 kPa).
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged.
f. Trim: Bronze.
g. Disc: Solid wedge.
h. Packing and Gasket: Asbestos free.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.
C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install swing check valves for proper direction of flow and in horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Shutoff Service: Ball, butterfly valves.
2. Throttling Service, Except Steam: Globe, ball, or butterfly valves.
3. Pump-Discharge Check Valves:
 a. NPS 2 (DN 50) and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 2-1/2 (DN 65) and Larger: Iron swing check valves with lever and weight or with spring.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:

1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 (DN 125) and Larger: Flanged ends.
4. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 (DN 125) and Larger: Flanged ends.

3.5 CHILLED-WATER VALVE SCHEDULE

A. Pipe NPS 2 (DN 50) and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze Angle Valves: Class 125, bronze disc.
3. Ball Valves: One piece, full port, brass or bronze with brass trim.
4. Bronze Swing Check Valves: Class 125 bronze disc.
5. Bronze Gate Valves: Class 125, NRS, bronze.

B. Pipe NPS 2-1/2 (DN 65) and Larger:
 1. Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
 3. High-Performance Butterfly Valves: Class 150, single flange.
 4. Iron Swing Check Valves: class 125, metal seats.
 5. Iron Swing Check Valves with Closure Control, NPS 2-1/2 to NPS 12 (DN 65 to DN 300): Class 125, lever and spring.
 6. Iron Gate Valves: Class 125, NRS.

3.6 CONDENSER-WATER VALVE SCHEDULE

A. Pipe NPS 2 (DN 50) and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Ball Valves: One piece, full port, brass or bronze with brass trim.
 3. Bronze Swing Check Valves: Class 125, bronze disc.
 4. Bronze Gate Valves: Class 125, NRS.
 5. Bronze Globe Valves: Class 125, bronze disc.

B. Pipe NPS 2-1/2 (DN 65) and Larger:
 1. Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
 3. High-Performance Butterfly Valves: Class 150, single flange.
 4. Iron Swing Check Valves: Class 125, metal seats.
 5. Iron Swing Check Valves with Closure Control, NPS 2-1/2 to NPS 12 (DN 65 to DN 300): Class 125, lever and spring.
 6. Iron Gate Valves: Class 125, NRS.

3.7 HEATING-WATER VALVE SCHEDULE

A. Pipe NPS 2 (DN 50) and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Ball Valves: One piece, full port, brass or bronze with stainless-steel trim.
 3. Bronze Swing Check Valves: Class 125, bronze disc.
 4. Bronze Gate Valves: Class 125, NRS.
 5. Bronze Globe Valves: Class 125, bronze disc.
B. Pipe NPS 2-1/2 (DN 65) and Larger:

1. Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
4. High-Performance Butterfly Valves: Class 150, single flange.
5. Iron Swing Check Valves: class 125, metal seats.
6. Iron Swing Check Valves with Closure Control, NPS 2-1/2 to NPS 12 (DN 65 to DN 300): Class 125, lever and spring.
7. Iron Gate Valves: Class 125, NRS.
8. Iron Globe Valves, NPS 2-1/2 to NPS 12 (DN 65 to DN 300): Class 125.
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Thermal-hanger shield inserts.
4. Fastener systems.
5. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of [copper-coated steel] [stainless steel] <Insert material>.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.
2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 59, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig (688-kPa) ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 59, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
L. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.5 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel or attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).

2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F (566 deg C), pipes NPS 4 to NPS 24 (DN 100 to DN 600), requiring up to 4 inches (100 mm) of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 (DN 20 to DN 900), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
4. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
5. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
6. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30 (DN 25 to DN 750), from two rods if longitudinal movement caused by expansion and contraction might occur.
7. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 (DN 50 to DN 1050) if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 (DN 20 to DN 600) if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb (340 kg).
 b. Medium (MSS Type 32): 1500 lb (680 kg).
 c. Heavy (MSS Type 33): 3000 lb (1360 kg).
8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Balancing Air Systems:
 a. Variable-air-volume systems.

1.2 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 INFORMATIONAL SUBMITTALS

B. Certified TAB reports.

1.4 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or TABB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC NEBB or TABB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC NEBB or TABB as a TAB technician.
B. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
C. TAB Report Forms: Use standard TAB contractor's forms approved by Commissioning Authority.

D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

G. Examine test reports specified in individual system and equipment Sections.

H. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
I. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

J. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.

K. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.

L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

M. Examine system pumps to ensure absence of entrained air in the suction piping.

N. Examine operating safety interlocks and controls on HVAC equipment.

O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:
 1. Permanent electrical-power wiring is complete.
 2. Hydronic systems are filled, clean, and free of air.
 3. Automatic temperature-control systems are operational.
 4. Equipment and duct access doors are securely closed.
 5. Balance, smoke, and fire dampers are open.
 6. Isolating and balancing valves are open and control valves are operational.
 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and in this Section.
 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation,"
Section 230716 "HVAC Equipment Insulation," Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in [inch-pound (IP)] [and] [metric (SI)] units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
3. Measure total system airflow. Adjust to within indicated airflow.
4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
8. Record final fan-performance data.

C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 1. Balance variable-air-volume systems the same as described for constant-volume air systems.
 2. Set terminal units and supply fan at full-airflow condition.
 3. Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 4. Readjust fan airflow for final maximum readings.
 5. Measure operating static pressure at the sensor that controls the supply fan if one is installed, and verify operation of the static-pressure controller.
 6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
 7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
8. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
3. Set terminal units at full-airflow condition.
4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
5. Adjust terminal units for minimum airflow.
6. Measure static pressure at the sensor.
7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

3.6 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.7 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:

1. Entering- and leaving-water temperature.
2. Water flow rate.
3. Water pressure drop.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.
7. Air pressure drop.

B. Measure, adjust, and record the following data for each electric heating coil:

1. Nameplate data.
2. Airflow.
3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load and at each incremental stage.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each steam coil:

1. Dry-bulb temperature of entering and leaving air.
2. Airflow.
3. Air pressure drop.
4. Inlet steam pressure.

D. Measure, adjust, and record the following data for each refrigerant coil:

1. Dry-bulb temperature of entering and leaving air.
2. Wet-bulb temperature of entering and leaving air.
3. Airflow.
4. Air pressure drop.
5. Refrigerant suction pressure and temperature.

3.8 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.

3.9 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare monthly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.
3.10 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers' test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB contractor.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.
D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

3.11 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following duct services:
 1. all duct inside, exposed or concealed.

B. Related Sections:
 1. Section 230719 "HVAC Piping Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
 1.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application of field-applied jackets.
 4. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Owens Corning; SOFTR All-Service Duct Wrap.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 225.
2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

 1. **Products:** Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. **Eagle Bridges - Marathon Industries;** 225.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 1. **Products:** Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. **Vimasco Corporation;** 749.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
1. **Products:** Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:

b. **Eagle Bridges - Marathon Industries;** 550.
c. **Foster Brand, Specialty Construction Brands, Inc.,** a business of H. B. Fuller Company; 46-50.
d. **Mon-Eco Industries, Inc.;** 55-50.
e. **Vimasco Corporation;** WC-1/WC-5.

2. **Water-Vapor Permeance:** ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.

3. **Service Temperature Range:** Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).

4. **Solids Content:** 60 percent by volume and 66 percent by weight.

5. **Color:** White.

2.4 SEALANTS

A. **FSK and Metal Jacket Flashing Sealants:**

1. **Products:** Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:

a. **Childers Brand,** Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
b. **Eagle Bridges - Marathon Industries;** 405.
c. **Foster Brand, Specialty Construction Brands, Inc.,** a business of H. B. Fuller Company; 95-44.
d. **Mon-Eco Industries, Inc.;** 44-05.

2. **Materials shall be compatible with insulation materials, jackets, and substrates.**

3. **Fire- and water-resistant, flexible, elastomeric sealant.**

4. **Service Temperature Range:** Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).

5. **Color:** Aluminum.

6. **For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).**

7. **Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."**

2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, [provide the following] [provide one of the following] [available products that may be incorporated into the Work include, but are not limited to, the following]:

 a. ABI, Ideal Tape Division; 428 AWF ASJ
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 e. <Insert manufacturer's name; product name or designation>.

2. Width: 3 inches (75 mm).

3. Thickness: 11.5 mils (0.29 mm).

4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.

5. Elongation: 2 percent.

6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.

7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 c. Compac Corporation; 120.
 d. Venture Tape; 3520 CW.

2. Width: 2 inches (50 mm).

3. Thickness: 3.7 mils (0.093 mm).

4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.

5. Elongation: 5 percent.

6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.
PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.

2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:

1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).

5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.5 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.6 DUCT INSULATION SCHEDULE, GENERAL
A. Plenums and Ducts Requiring Insulation:
 1. All duct, exposed or concealed.
B. Items Not Insulated:
 1. Factory-insulated flexible ducts.

3.7 INDOOR DUCT AND PLENUM INSULATION SCHEDULE
A. All exposed or concealed-Air Duct and Plenum Insulation: Mineral-fiber blanket, 2 inches (50 mm) thick and minimum R-8 insulation value.

END OF SECTION 230713
SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following HVAC piping systems:
 1. Chilled-water piping, indoors and outdoors.
 2. Heating hot-water piping, indoors.

B. Related Sections:
 1. Section 230713 "Duct Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at pipe expansion joints for each type of insulation.
 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 4. Detail removable insulation at piping specialties.
 5. Detail application of field-applied jackets.
 6. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Products shall not contain asbestos, lead, mercury, or mercury compounds.

B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide the following product that may be incorporated into the Work include, but are not limited to, the following:
 a. Pittsburgh Corning Corporation; Foamglas.

2. Block Insulation: ASTM C 552, Type I.
3. Special-Shaped Insulation: ASTM C 552, Type III.
4. Board Insulation: ASTM C 552, Type IV.
5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

F. Mineral-Fiber, Preformed Pipe Insulation:

1. Products: Subject to compliance with requirements, [provide the following] [provide one of the following] [available products that may be incorporated into the Work include, but are not limited to, the following]:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.
 f. "Insert manufacturer's name; product name or designation".

2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, [without factory-applied jacket] [with factory-applied ASJ] [with factory-applied ASJ-SSL]. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
3. Type II, 1200 deg F (649 deg C) Materials: Mineral or glass fibers bonded with a thermostetting resin. Comply with ASTM C 547, Type II, Grade A, [without factory-applied jacket] [with factory-applied ASJ] [with factory-applied ASJ-SSL]. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

1. Products: Subject to compliance with requirements, provide the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermostetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F (minus 73 to plus 93 deg C).

1. Products: Subject to compliance with requirements, provide the following available products that may be incorporated into the Work include, but are not limited to, the following:

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polyco VP Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Vimasco Corporation; 749.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.
 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 SEALANTS

A. Joint Sealants:
 1. Joint Sealants for Cellular-Glass Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
International Trade Center HVAC Renovation

e. Pittsburgh Corning Corporation; Pittseal 444.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
5. Color: White or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. FSK and Metal Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
5. Color: Aluminum.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. PVDC Jacket for Indoor Applications: 4-mil- (0.10-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm (0.013 metric perm) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 a. Products: Subject to compliance with requirements, provide the following available products that may be incorporated into the Work include, but are not limited to, the following:
 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

6. PVDC Jacket for Outdoor Applications: 6-mil- (0.15-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm (0.007 metric perm) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 a. Products: Subject to compliance with requirements, provide the following available products that may be incorporated into the Work include, but are not limited to, the following:
 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

7. Vinyl Jacket: White vinyl with a permeance of 1.3 perms (0.86 metric perms) when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. (34 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm), in a Leno weave, for pipe.
1. **Products:** Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:

 b. Vimasco Corporation; Elastafab 894.

2.8 **FIELD-APPLIED JACKETS**

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. **FSK Jacket:** Aluminum-foil face, fiberglass-reinforced scrim with kraft-paper backing.

C. **PVC Jacket:** High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. **Products:** Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.

2. **Adhesive:** As recommended by jacket material manufacturer.

3. **Color:** White.

4. **Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.**

 a. **Shapes:** 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

D. **Aluminum Jacket:** Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.

1. **Products:** Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:

 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.

2. **Factory cut and rolled to size.**

3. **Finish and thickness are indicated in field-applied jacket schedules.**
4. **Moisture Barrier for Indoor Applications:** 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.

5. **Moisture Barrier for Outdoor Applications:** 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.

6. **Factory-Fabricated Fitting Covers:**

a. Same material, finish, and thickness as jacket.
b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
c. Tee covers.
d. Flange and union covers.
e. End caps.
f. Beveled collars.
g. Valve covers.
h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

E. **PVDC Jacket for Indoor Applications:** 4-mil- (0.10-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms (0.013 metric perms) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.

1. **Products:** Subject to compliance with requirements, provide the following available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Dow Chemical Company (The); Saran 540 Vapor Retarder Film.

F. **PVDC Jacket for Outdoor Applications:** 6-mil- (0.15-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms (0.007 metric perms) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.

1. **Products:** Subject to compliance with requirements, provide the following available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Dow Chemical Company (The); Saran 560 Vapor Retarder Film.

2.9 **TAPES**

A. **ASJ Tape:** White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. **Products:** Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ABI, Ideal Tape Division; 428 AWF ASJ.
b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
International Trade Center HVAC Renovation

c. Compac Corporation; 104 and 105.
d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches (75 mm).
3. Thickness: 11.5 mils (0.29 mm).
4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

 2. Width: 3 inches (75 mm).
 3. Thickness: 6.5 mils (0.16 mm).
 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.

 2. Width: 2 inches (50 mm).
 3. Thickness: 6 mils (0.15 mm).
 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 5. Elongation: 500 percent.
 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
a. ABI, Ideal Tape Division; 488 AWF.
b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
c. Compac Corporation; 120.
d. Venture Tape; 3520 CW.

2. Width: 2 inches (50 mm).
3. Thickness: 3.7 mils (0.093 mm).
4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, provide the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Dow Chemical Company (The); Saran 540 Vapor Retarder Tape.

2. Width: 3 inches (75 mm).
3. Film Thickness: 4 mils (0.10 mm).
4. Adhesive Thickness: 1.5 mils (0.04 mm).
5. Elongation at Break: 145 percent.
6. Tensile Strength: 55 lbf/inch (10.1 N/mm) in width.

F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, provide the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Dow Chemical Company (The); Saran 560 Vapor Retarder Tape.

2. Width: 3 inches (75 mm).
3. Film Thickness: 6 mils (0.15 mm).
4. Adhesive Thickness: 1.5 mils (0.04 mm).
5. Elongation at Break: 145 percent.
6. Tensile Strength: 55 lbf/inch (10.1 N/mm) in width.

2.10 SECUREMENTS

A. Aluminum Bands: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

C. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at [2 inches (50 mm)] [4 inches (100 mm)] o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches (150 mm) o.c.
4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches (150 mm) o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF POLYOLEFIN INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of polyolefin pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:
 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

B. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

C. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

D. Where PVDC jackets are indicated, install as follows:

1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches (50 mm) over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches (850 mm) or less. The 33-1/2-inch- (850-mm-) circumference limit allows for 2-inch- (50-mm-) overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.9 FINISHES

A. Pipe Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
C. Color: Final color as selected by ASPA PM. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Chilled Water, above 40 Deg F (5 Deg C): Insulation shall be one of the following:

1. Cellular Glass: 2 inches (50 mm) thick.

B. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and Below: Insulation shall be the following:

1. Mineral-Fiber, Preformed Pipe, Type I: 2 inches (50 mm) thick.

C. Dual-Service Heating and Cooling, 40 to 200 Deg F (5 to 93 Deg C): Insulation shall be one

3.13 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Chilled Water: Insulation shall be the following:
1. Cellular Glass: 3 inches (75 mm) thick.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. PVC: 20 mils (0.5 mm) thick.

D. Piping, Exposed:
 1. PVC: 20 mils (0.5 mm) thick.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. Aluminum, Corrugated: 0.020 inch (0.51 mm) thick.

D. Piping, Exposed:
 1. Aluminum, Corrugated: 0.020 inch (0.51 mm) thick.

END OF SECTION 230719
SECTION 230900 – AUTOMATIC TEMPERATURE CONTROLS SYSTEM (ATCS)

PART 1 GENERAL

1.1 SUMMARY

A. Furnish all labor, materials, equipment, and service necessary for a complete and operating Temperature Control System (TCS) and Facility Management system (FMCS), utilizing Direct Digital Controls as shown on the drawings and as described herein. Drawings are diagrammatic only.

B. All labor, material, equipment and software not specifically referred to herein or on the plans, that is required to meet the functional intent of this specification, shall be provided without additional cost to the Owner.

C. The Owner shall be the named license holder of all software associated with any and all incremental work on the project(s).

1.2 SYSTEM DESCRIPTION

A. The entire Temperature Control System (TCS) shall be comprised of a network of interoperable, stand-alone digital controllers communicating via LonMark™/LonTalk™ and/or BACnet™ communication protocols to a Network Area Controller (NAC). A Niagara Tridium based WEBS N4 system manufactured by Honeywell International shall be provided and installed. Basis of design is provided by Walters Controls, Inc. 251-661-4416 attention Trent Walters. Contractor shall submit alternative control systems for prior approval a minimum of 10 days before the bid. It is in the best interest of the owner to have a consistent service provider and spare parts for each item of its building during construction, warranty and after warranty periods. Certification of Tridium training by at least 3 employees must be provided at the submittal phase.

B. The Temperature Control Systems (TCS) consisting of thermostats, control valves, dampers and operators, indicating devices, interface equipment and other apparatus and accessories required to operate mechanical systems, and perform functions specified.

C. The Facility Management and Control System (FMCS) shall be comprised of Network Area Controller or Controllers (NAC) within each facility. The NAC shall connect to the owner’s local or wide area network, depending on configuration. Access to the system, either locally in each building, or remotely from a central site or sites, shall be accomplished through standard Web browsers, via the Internet and/or local area network. Each NAC shall communicate to LonMark™/LonTalk™ (IDC) and/or BACnet™ (IBC) controllers and other open protocol systems/devices provided under Division 15 or Division 16.

D. The Facility Management and Control System (FMCS) as provided in this Division shall be based on a hierarchical architecture incorporating the Niagara N4 Framework™. DDC controls shall be as manufactured by Honeywell International.
E. The Facility Management and Control System (FMCS) shall monitor and control equipment as called for by the “Sequence of Operation” and points list.

F. The Facility Management and Control System (FMCS) shall provide full graphic software capable of complete system operation for up to 34 simultaneous Thin-Client workstations.

G. The Facility Management and Control System (FMCS) shall provide full graphic operator interface to include the following graphics as a minimum:

1. Home page to include a minimum of six critical points, i.e. Outside Air Temperature, Outside Air Relative Humidity, Enthalpy, KWH, KW etc.

2. Graphic floor plans accurately depicting rooms, walls, hallways, and showing accurate locations of space sensors and major mechanical equipment.

3. Detail graphics for each mechanical system to include; AHUs (Air Handling Units), ERUs (Energy Recovery Units), TUs (Terminal Units), EFs (Exhaust Fans), Chillers and associated controls, Boilers, and Converters as a minimum.

4. Access corresponding system drawings, technical literature, and sequences of operations directly from each system graphic.

H. The Facility Management and Control System (FMCS) shall provide the following data links to electronically formatted information for operator access and use.

1. Project control as-built documentation; to include all TCS drawings and diagrams converted to Adobe Acrobat .pdf filers.

2. TCS Bill of Material for each system, i.e. AHU, RTU, FCU, Boiler etc.

3. Technical literature specification data sheets for all components listed in the TCS Bill of Material.

4. Sequence of operation for all TCS provided systems.

1.3 SUBMITTAL

A. Eight copies of shop drawings of the components and devices for the entire control system shall be submitted and shall consist of a complete list of equipment and materials, including manufacturers catalog data sheets and installation instructions for all controllers, valves, dampers, sensors, routers, etc. Shop drawings shall also contain complete wiring and schematic diagrams, software descriptions, calculations, and any other details required to demonstrate that the system has been coordinated and will properly function as a system. Terminal identification for all control wiring shall be shown on the shop
drawings. A complete written Sequence of Operation shall also be included with the submittal package. Division 16 contractors supplying products and systems, as part of their packages shall provide catalog data sheets, wiring diagrams and point lists to the Division 15 contractor for proper coordination of work.

1. Valve Schedule: Valve sizing shall be performed, and a schedule created by the valve manufacturer. The schedule shall include a separate line for each valve and a column for each of the valve attributes: Valve Identification Tag, Location, Valve Type, Valve Size, Configuration, Flow Characteristics, Capacity, Valve Cv, Fail Position, Actuator Identification Tag, and Actuator Type.

B. Submittal shall also include a trunk cable schematic diagram depicting operator workstations, control panel locations and a description of the communication type, media, and protocol. Though the Division 15 and 16 contractors shall provide these diagrams for their portions of work, the Systems Integrator shall be responsible for integrating those diagrams into the overall trunk cable schematic diagrams for the entire Wide Area Network (WAN) and/or Local Area Network (LAN) utilized by the FMCS.

1. The network infrastructure shall conform to the published guidelines for wire type, length, number of nodes per channel, termination, and other relevant wiring and infrastructure criteria as published. The number of nodes per channel shall be no more than 85% of the defined segment (logical or physical) limit in order to provide future system expansion with minimal infrastructure modifications.

C. Upon completion of the work, provide a complete set of ‘as-built’ drawings and application software on compact disk. Drawings shall be provided as AutoCAD™ or Visio™ compatible files. Eight copies of the ‘as-built’ drawings shall be provided in addition to the documents on compact disk. Division 15 and 16 contractors shall provide as-builts for their portions of work. The Division 15 contractor shall be responsible for as-builts pertaining to overall TCS and FMCS architecture and network diagrams. All as-built drawings shall also be installed into the FMCS server in a dedicated directory.

1.4 SPECIFICATION NOMENCLATURE

A. Acronyms used in this specification are as follows:

- DDC Direct Digital Controls
- FMCS Facility Management and Control System
- GUI Graphical User Interface
- IBC Interoperable BACnet Controller
- IDC Interoperable Digital Controller
- LAN Local Area Network
- NAC Network Area Controller
- OOT Object Oriented Technology
1.5 DIVISION OF WORK
A. The Division 15 and 16 (if applicable) contractors shall be responsible for all controllers (IDC and IBC), control devices, control panels, controller programming, controller programming software, controller input/output and power wiring and controller network wiring.
B. The Division 15 contractor shall be responsible for the Network Area Controller(s) (NAC), software and programming of the NAC, graphical user interface software (GUI), development of all graphical screens, Web browser pages, setup of schedules, logs and alarms, LonWorks network management and connection of the NAC to the local or wide area network.

1.6 RELATED WORK SPECIFIED ELSEWHERE
A. Division 16, Electrical:
 1. Providing motor starters and disconnect switches.
 2. Power wiring and its conduit.
 3. Provision, installation and wiring of smoke detectors.
 4. Other equipment and wiring as specified in Division 16.

1.7 AGENCY AND CODE APPROVALS
A. All products of the TCS and FMCS shall be provided with the following agency approvals. Verification that the approvals exist for all submitted products shall be provided with the submittal package. Systems or products not currently offering the following approvals are not acceptable.
 1. UL-916; Energy Management Systems
 2. C-UL listed to Canadian Standards Association C22.2 No. 205-M1983 “signal Equipment”
 3. CE
 4. FCC, Part 15, Subpart J, Class A Computing Devices

1.8 SOFTWARE LICENSE AGREEMENT
A. The Owner shall agree to the manufacturer's standard software and firmware licensing agreement as a condition of this contract. Such license shall grant use of all programs and application software to Owner as defined by the manufacturer's license agreement, but shall protect manufacturer's rights to disclosure of trade secrets contained within such software.
B. The Owner shall be the named license holder of all software associated with any and all incremental work on the project(s). In addition, the Owner shall receive ownership of all job specific configuration documentation, data files, and application-level software developed for the project. This shall include all custom, job specific software code and documentation for all configuration and programming that is generated for a given project and/or configured for use with the NAC, FMCS, and any related LAN/WAN/Intranet and Internet connected routers and devices. Any and all required IDs and passwords for access to any component or software program shall be provided to the owner.

C. The owner, or his appointed agent, shall receive ownership of all job specific software configuration documentation, data files, and application-level software developed for the project. This shall include all custom, job specific software code and documentation for all configuration and programming that is generated for a given project and/or configured for use within Niagara AX Framework (Niagara) based controllers and/or servers and any related LAN/WAN/Intranet and all connected routers and devices.

PART 2 MATERIALS

2.1 GENERAL

A. The Temperature Control System (TCS) and Facility Management Control System (FMCS) shall be comprised of a network of interoperable, stand-alone digital controllers, a computer system, graphical user interface software, printers, network devices, valves, dampers, sensors, and other devices as specified herein.

B. The installed system shall provide secure password access to all features, functions and data contained in the overall FMCS.

2.2 ACCEPTABLE MANUFACTURERS

Basis-of-Design: Niagara Tridium Web based system. Approved suppliers are Honeywell International by Walters Controls, Inc.

OPEN, INTEROPERABLE, INTEGRATED ARCHITECTURES

A. The intent of this specification is to provide a peer-to-peer networked, stand-alone, distributed control system with the capability to integrate ANSI/ASHRAE Standard 135-2001 BACnet™, LonWorks™ technology, MODBUS™, OPC, and other open and proprietary communication protocols into one open, interoperable system.

B. The supplied computer software shall employ object-oriented technology (OOT) for representation of all data and control devices within the system. In addition, adherence to industry standards including ANSI/ASHRAE Standard 135-2001, BACnet and LonMark to assure interoperability between all system components is required. For each LonWorks device that does not have LonMark certification, the device supplier must provide an XIF file and a resource file for the device. For each BACnet device, the device supplier must provide a PICS document showing the installed device’s compliance level. Minimum compliance is Level 3; with the ability to support data read and write functionality. Physical connection of BACnet devices shall be via Ethernet (BACnet Ethernet/IP,) and/or RS-485 (BACnet MSTP) as specified.
C. All components and controllers supplied under this Division shall be true “peer-to-peer” communicating devices. Components or controllers requiring “polling” by a host to pass data shall not be acceptable.

D. The supplied system must incorporate the ability to access all data using standard Web browsers without requiring proprietary operator interface and configuration programs. Systems requiring proprietary database and user interface programs shall not be acceptable.

E. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer’s internal Intranet network. Systems employing a “flat” single tiered architecture shall not be acceptable.

 1. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 5 seconds for local network connected user interfaces.

 2. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 60 seconds for remote or dial-up connected user interfaces.

2.3 NETWORKS

A. The Local Area Network (LAN) shall be a 100 Megabit/sec Ethernet network supporting BACnet, Java, XML, HTTP, and SOAP for maximum flexibility for integration of building data with enterprise information systems and providing support for multiple Network Area Controllers (NACs), user workstations and, if specified, a local server.

B. Local area network minimum physical and media access requirements:

 1. Ethernet; IEEE standard 802.3

 2. Cable; 100 Base-T, UTP-8 wire, category 5

 3. Minimum throughput; 100 Mbps.

2.4 NETWORK ACCESS

A. Remote Access.

 1. For Local Area Network installations, provide access to the LAN from a remote location, via the Internet. The Owner shall provide a connection to the Internet to enable this access via high speed cable modem, asynchronous digital subscriber line (ADSL) modem, ISDN line, T1 Line or via the customer’s Intranet to a corporate server providing access to an Internet Service Provider (ISP). Customer agrees to pay monthly access charges for connection and ISP.

2.5 NETWORK AREA CONTROLLER (NAC)

A. The DDC contractor shall supply one or more Network Area Controllers (NAC) as part of this contract. Number of area controllers required is dependent on the type and quantity of devices provided under Divisions 15 and 16. It is the responsibility of the DDC contractor to coordinate with the Division 15 and 16 contractors to determine the quantity and type of devices.

B. The Network Area Controller (NAC) shall provide the interface between the LAN or WAN and the field control devices, and provide global supervisory control functions over the control devices connected to the NAC. It shall be capable of executing application control programs to provide:

 1. Calendar functions
2. Scheduling
3. Trending
4. Alarm monitoring and routing
5. Time synchronization
6. Integration of LonWorks controller data and BACnet controller data
7. Network Management functions for all LonWorks and/or BACnet based devices

C. The Network Area Controller shall provide the following hardware features as a minimum:
1. One Ethernet Port – 10/100 Mbps
2. One RS-232 port
3. One LonWorks Interface Port – 78KB FTT-10A if Lon controllers are used and/or
 One RS-485 port if BACnet controllers are used.
4. Battery Backup
5. Flash memory for long term data backup (If battery backup or flash memory is not supplied, the
 controller must contain a hard disk with at least 1 gigabyte storage capacity)

D. The NAC shall provide multiple user access to the system and support for ODBC or SQL. A database
resident on the NAC shall be an ODBC-compliant database or must provide an ODBC data access
mechanism to read and write data stored within it.

E. The NAC shall support standard Web browser access via the Intranet/Internet. It shall support a
minimum of 32 simultaneous users.
1. Provide alarm generation from binary object “runtime” and/or event counts for equipment
 maintenance. The user shall be able to reset runtime or event count values with appropriate
 password control.

F. Controller and network failures shall be treated as alarms and annunciacted.

G. Alarms shall be annunciacted in any of the following manners as defined by the user:
1. Screen message text
2. Email of the complete alarm message to multiple recipients via the owner’s e-mail service.
 Provide the ability to route and email alarms based on:
 a. Day of week
 b. Time of day
 c. Recipient
3. Pagers via paging services that initiate a page on receipt of email message via the owner’s e-mail
 service
4. Graphic with flashing alarm object(s)
5. Printed message, routed directly to a dedicated alarm printer

H. The following shall be recorded by the NAC for each alarm (at a minimum):
1. Time and date
2. Location (building, floor, zone, office number, etc.)
3. Equipment (air handler #, access way, etc.)
4. Acknowledge time, date, and user who issued acknowledgement.
5. Number of occurrences since last acknowledgement.

I. Alarm actions may be initiated by user defined programmable objects created for that purpose.

J. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.

K. A log of all alarms shall be maintained by the NAC and/or a server (if configured in the system) and shall be available for review by the user.

L. Provide a “query” feature to allow review of specific alarms by user defined parameters.

2.6 Data Collection and Storage

A. The NAC shall have the ability to collect data for any property of any object and store this data for future use.

B. The data collection shall be performed by log objects, resident in the NAC that shall have, at a minimum, the following configurable properties:
 1. Designating the log as interval or deviation.
 2. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.
 3. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.
 4. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.
 5. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.

C. All log data shall be stored in a relational database in the NAC and the data shall be accessed from a server (if the system is so configured) or a standard Web browser.

D. All log data, when accessed from a server, shall be capable of being manipulated using standard SQL statements.

E. All log data shall be available to the user in the following data formats:
 1. HTML
 2. XML
 3. Plain Text
 4. Comma or tab separated values
 5. PDF

F. Systems that do not provide log data in HTML and XML formats at a minimum shall not be acceptable.
2.7 DATABASE BACKUP AND STORAGE

A. The NAC shall have the ability to automatically backup its database. The database shall be backed up based on a user-defined time interval.

B. Copies of the current database and, at the most recently saved database shall be stored in the NAC. The age of the most recently saved database is dependent on the user-defined database save interval.

C. The NAC database shall be stored, at a minimum, in XML format to allow for user viewing and editing, if desired. Other formats are acceptable as well, as long as XML format is supported.

2.8 ADVANCED UNITARY CONTROLLER

A. The controller platform shall be designed specifically to control HVAC – ventilation, filtration, heating, cooling, humidification, and distribution. Equipment includes: constant volume air handlers, VAV air handlers, packaged RTU, heat pumps, unit vents, fan coils, natural convection units, and radiant panels. The controller platform shall provide options and advanced system functions, programmable and configurable using Niagara N4 Framework™, that allow standard and customizable control solutions required in executing the “Sequence of Operation” as outlined in Section 4.

B. Minimum Requirements:

1. The controller shall be capable of either integrating with other devices or stand-alone operation.

2. The controller shall have two microprocessors. The Host processor contains on-chip FLASH program memory, FLASH information memory, and RAM to run the main HVAC application. The second processor for LonWorks™ network communications.
 a. FLASH Memory Capacity: 116 Kilobytes with 8 Kilobytes for application program.
 b. FLASH Memory settings retained for ten years.
 c. RAM: 8 Kilobytes

3. The controller shall have an FTT transformer-coupled communications port interface for common mode-noise rejection and DC isolation.

4. The controller shall have an internal time clock with the ability to automatically revert from a master time clock on failure.
 a. Operating Range: 24 hour, 365 day, multi-year calendar including day of week and configuration for automatic day-light savings time adjustment to occur on configured start and stop dates.
 b. Accuracy: ±1 minute per month at 77° F (25° C).
 c. Power Failure Backup: 24 hours at 32° to 100° F (0° to 38° C), 22 hours at 100° to 122° F (38° to 50° C).

5. The controller shall include Sylk Bus, a two wire, polarity insensitive bus that provides both 18 Vdc power and communications between a Sylk-enabled device and a Sylk-enabled controller.

6. The controller shall have Significant Event Notification, Periodic Update capability, and Failure Detect when network inputs fail to be detected within their configurable time frame.

7. The controller shall have an internal DC power supply to power external sensors.
 a. Power Output: 20 VDC ±10% at 75 mA.
8. The controller shall have a visual indication (LED) of the status of the devise:
 a. Controller operating normally.
 b. Controller in process of download.
 c. Controller in manual mode under control of software tool.
 d. Controller lost its configuration.
 e. No power to controller, low voltage, or controller damage.
 f. Processor and/or controller are not operating.
9. The controller shall have sufficient on-board inputs and outputs to support the application.
 a. Analog outputs (AO) shall be capable of being configured to support 0-10 V, 2-10 V or 4-20 mA devices.
 b. Triac outputs shall be capable of switching 30 Volts at 500 mA.
 c. Input and Output wiring terminal strips shall be removable from the controller without disconnecting wiring. Input and Output wiring terminals shall be designated with color coded labels.
 d. Universal inputs shall be capable of being configured as binary inputs, resistive inputs, voltage inputs (0-10 VDC), or current inputs (4-20 mA).
10. The controller shall provide for “user defined” Network Variables (NV) for customized configurations and naming using Niagara N4 Framework™.
 a. The controller shall support 240 Network Variables with a byte count of 31 per variable.
 b. The controller shall support 960 separate data values.
11. The controller shall provide “continuous” automated loop tuning with an Adaptive Integral Algorithm Control Loop.
C. The controller platform shall be designed specifically to control HVAC – ventilation, filtration, heating, cooling, humidification, and distribution. Equipment includes: constant volume air handlers, packaged RTU, heat pumps, unit vents, fan coils, natural convection units, and radiant panels. The controller platform shall provide options and advanced system functions, configurable using Niagara N4 Framework™, that allow standard control solutions required in executing the “Sequence of Operation” as outlined in Section 4.
D. Minimum Requirements:
 1. The controller shall be capable of either integrating with other devices or stand-alone operation.
 2. The controller shall have an FTT transformer-coupled communications port interface for common mode-noise rejection and DC isolation.
 3. The controller shall have Significant Event Notification, Periodic Update capability, and Failure Detect when network inputs fail to be detected within their configurable time frame.
 4. The controller shall have a visual indication (LED) of the status of the devise:
 a. Controller operating normally.
 b. Controller in process of download.
 c. Controller in manual mode under control of software tool.
d. Controller lost its configuration.
e. No power to controller, low voltage, or controller damage.
f. Processor and/or controller are not operating.

5. The minimum controller Environmental ratings
 a. Operating Temperature Ambient Rating: -40° to 150° F (-40° to 65.5° C).
 b. Storage Temperature Ambient Rating: -40° to 150° F (-40° to 65.5° C).
 c. Relative Humidity: 5% to 95% non-condensing.

6. The controller shall have the additional approval requirements, listings, and approvals:
 a. UL/cUL (E87741) listed under UL916 (Standard for Open Energy Management Equipment) with plenum rating.
 b. CSA (LR95329-3) Listed

2.9 GRAPHICAL USER INTERFACE SOFTWARE

A. Operating System:
 1. The Workstation with GUI shall run on Microsoft Windows latest version.

B. The GUI shall employ browser-like functionality for ease of navigation. It shall include a tree view (similar to Windows Explorer) for quick viewing of, and access to, the hierarchical structure of the database. In addition, menu-pull downs, and toolbars shall employ buttons, commands and navigation to permit the operator to perform tasks with a minimal knowledge of the HVAC Control System and basic computing skills. These shall include, but are not limited to, forward/backward buttons, home button, and a context sensitive locator line (similar to a URL line), that displays the location and the selected object identification.

C. Real-Time Displays. The GUI, shall at a minimum, support the following graphical features and functions:
 1. Graphic screens shall be developed using any drawing package capable of generating a GIF, BMP, or JPG file format. Use of proprietary graphic file formats shall not be acceptable. In addition to, or in lieu of, a graphic background the GUI shall support the use of scanned pictures.
 2. Graphic screens shall have the capability to contain objects for text, real-time values, animation, color spectrum objects, logs, graphs, HTML or XML document links, schedule objects, hyperlinks to other URL’s, and links to other graphic screens.
 3. Graphics shall support layering and each graphic object shall be configurable for assignment to a layer. A minimum of six layers shall be supported.
 4. Modifying common application objects, such as schedules, calendars, and set points shall be accomplished in a graphical manner.
 a. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 b. Holidays shall be set by using a graphical calendar without requiring any keyboard entry from the operator.
5. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No text entry shall be required.

6. Adjustments to analog objects, such as set points, shall be done by right-clicking the selected object and using a graphical slider to adjust the value. No text entry shall be required.

D. System Configuration. At a minimum, the GUI shall permit the operator to perform the following tasks, with proper password access:
 a. Create, delete, or modify control strategies.
 b. Add or delete objects to the system.
 c. Tune control loops through the adjustment of control loop parameters.
 d. Enable or disable control strategies.
 e. Generate hard copy records or control strategies on a printer.
 f. Select points to be alarmable and define the alarm state.
 g. Select points to be trended over a period of time and initiate the recording of values automatically.

E. On-Line Help. Provide a context sensitive on-line help system to assist the operator in operation and editing of the system. On-line help shall be available for all applications and shall provide the relevant data for the currently displayed screen. Additional help information shall be available through the use of hypertext. All system documentation and help files shall be in HTML format.

F. Security. Each operator shall be required to log on to the system with a user name and password in order to view, edit, add, or delete data. System security shall be selectable for each operator. The system administrator shall have the ability to set passwords and security levels for all other operators. Each operator password shall be able to restrict the operators’ access for viewing and/or changing each system application, full screen editor, and object. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a specified time. This auto log-off time shall be set per operator password. All system security data shall be stored in an encrypted format.

2.10 WEB BROWSER CLIENTS

A. The system shall be capable of supporting an unlimited number of clients using a standard Web browser such as Internet Explorer™ or Netscape Navigator™. Systems requiring additional software (to enable a standard Web browser) to be resident on the client machine, or manufacture-specific browsers shall not be acceptable.

B. The Web browser software shall run on any operating system and system configuration that is supported by the Web browser. Systems that require specific machine requirements in terms of processor speed, memory, etc., in order to allow the Web browser to function with the FMCS, shall not be acceptable.

C. The Web browser shall provide the same view of the system, in terms of graphics, schedules, calendars, logs, etc., and provide the same interface methodology as is provided by the Graphical User Interface (if used). Systems that require different graphic views, different means of graphic generation, or that require different means of interacting with objects such as schedules, or logs, shall not be permitted.

D. The Web browser client shall support at a minimum, the following functions:
1. User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.

2. Graphical screens developed for the GUI shall be the same screens used for the Web browser client. Any animated graphical objects supported by the GUI shall be supported by the Web browser interface.

3. HTML programming shall not be required to display system graphics or data on a Web page. HTML editing of the Web page shall be allowed if the user desires a specific look or format.

4. Storage of the graphical screens shall be in the Network Area Controller (NAC), without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client are not acceptable.

5. Real-time values displayed on a Web page shall update automatically without requiring a manual “refresh” of the Web page.

6. Users shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:
 a. Modify common application objects, such as schedules, calendars, and set points in a graphical manner.
 1. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 2. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
 b. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No text entry shall be required.
 c. View logs and charts
 d. View and acknowledge alarms
 e. Setup and execute SQL queries on log and archive information

2.11 LIBRARY

A. A standard library of objects shall be included for development and setup of application logic, user interface displays, system services, and communication networks.

B. The objects in this library shall be capable of being copied and pasted into the user’s database and shall be organized according to their function. In addition, the user shall have the capability to group objects created in their application and store the new instances of these objects in a user-defined library.

C. In addition to the standard libraries specified here, the supplier of the system shall maintain an on-line accessible (over the Internet) library, available to all registered users to provide new or updated objects and applications as they are developed.

D. All control objects shall conform to the control objects specified in the BACnet specification.

E. The library shall include applications or objects for the following functions, at a minimum:
 1. Scheduling Object. The schedule must conform to the schedule object as defined in the BACnet specification, providing 7-day plus holiday & temporary scheduling features and a minimum of 10
on/off events per day. Data entry to be by graphical sliders to speed creation and selection of on-off events.

2. Calendar Object. The calendar must conform to the calendar object as defined in the BACnet specification, providing 12-month calendar features to allow for holiday or special event data entry. Data entry to be by graphical “point-and-click” selection. This object must be “linkable” to any or all scheduling objects for effective event control.

3. Duty Cycling Object. Provide a universal duty cycle object to allow repetitive on/off time control of equipment as an energy conserving measure. Any number of these objects may be created to control equipment at varying intervals.

4. Temperature Override Object. Provide a temperature override object that is capable of overriding equipment turned off by other energy saving programs (scheduling, duty cycling etc.) to maintain occupant comfort or for equipment freeze protection.

5. Start-Stop Time Optimization Object. Provide a start-stop time optimization object to provide the capability of starting equipment just early enough to bring space conditions to desired conditions by the scheduled occupancy time. Also, allow equipment to be stopped before the scheduled un-occupancy time just far enough ahead to take advantage of the building’s “flywheel” effect for energy savings. Provide automatic tuning of all start / stop time object properties based on the previous day’s performance.

6. Demand Limiting Object. Provide a comprehensive demand-limiting object that is capable of controlling demand for any selected energy utility (electric, oil, and gas). The object shall provide the capability of monitoring a demand value and predicting (by use of a sliding window prediction algorithm) the demand at the end of the user defined interval period (1-60 minutes). This object shall also accommodate a utility meter time sync pulse for fixed interval demand control. Upon a prediction that will exceed the user defined demand limit (supply a minimum of 6 per day), the demand limiting object shall issue shed commands to either turn off user specified loads or modify equipment set points to effect the desired energy reduction. If the list of sheddable equipment is not enough to reduce the demand to below the set point, a message shall be displayed on the users screen (as an alarm) instructing the user to take manual actions to maintain the desired demand. The shed lists are specified by the user and shall be selectable to be shed in either a fixed or rotating order to control which equipment is shed the most often. Upon suitable reductions in demand, the demand-limiting object shall restore the equipment that was shed in the reverse order in which it was shed. Each sheddable object shall have a minimum and maximum shed time property to effect both equipment protection and occupant comfort.

2.12 DDE DEVICE INTEGRATION

A. The Network Area Controller shall support the integration of device data via Dynamic Data Exchange (DDE), over the Ethernet Network. The Network Area Controller shall act as a DDE client to another software application that functions as a DDE server.

B. Provide the required objects in the library, included with the Graphical User Interface programming software, to support the integration of these devices into the FMCS. Objects provided shall include at a minimum:

1. DDE Generic AI Object
2. DDE Generic AO Object
3. DDE Generic BO Object
4. DDE Generic BI Object
5. Read/Write OPC BO Object
6. Read/Write OPC Date/Time Input Object
7. Read/Write OPC Date/Time Output Object
8. Read/Write OPC String Input Object
9. Read/Write OPC String Output Object

C. All scheduling, alarming, logging and global supervisory control functions, of the OPC system devices, shall be performed by the Network Area Controller.

D. The FMCS supplier shall provide an OPC client communications driver. The equipment system vendor that provided the equipment utilizing OPC shall provide documentation of the system’s OPC server interface and shall provide factory support at no charge during system commissioning.

2.13 GRAPHICAL USER INTERFACE COMPUTER HARDWARE – by owner

2.3 OTHER CONTROL SYSTEM HARDWARE

A. Space Temperature Wall Module: Temperature sensing modules mounted on the wall in occupied spaces. Optional setpoint, indication, and override switches must be provided as specified.

1. Manufacturers: Subject to compliance with requirements. Provide products by one of the manufacturers specified.
 a. Alerton
 b. ACI
 c. Honeywell

2. Wall module shall have a thermistor temperature sensor with operating range of 45 to 99 deg. F. under a locking cover/enclosure designed for mounting on a standard electrical switch box.

3. Space temperature sensors shall be accurate to plus or minus 0.5 deg. F at 77 deg. F.

4. Where specified, space temperature sensors shall have a setpoint knob calibrated for warmer-cooler adjustments

5. Where specified, wall module shall also have an after-hours override pushbutton and LED override indicator.

B. Duct Mount, Pipe Mount, and Outside Air Temperature Sensors:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Alerton
 b. ACI
 c. Honeywell
 d. Mamac

2. Outside air sensors shall include an integral sun shield.

3. Temperature sensors shall have an accuracy of plus or minus 1.0 deg. F. over operating range.
4. Duct sensors shall have sensor approximately in center of the duct, and shall have selectable lengths of 6, 12, and 18 inches.

5. Multipoint averaging element sensors shall be provided where specified, and shall have a minimum of one foot of sensor length for each square foot of duct area (provide multiple sensors if necessary).

6. Pipe mount sensors shall have copper, or stainless steel separable wells.

C. Current Switches: Solid state, split core, current switch that operates when the current level (sensed by the internal current transformer) exceeds the adjustable trip point shall be provided where specified. Current switches shall include an integral LED for indication of trip condition.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. ACI
 b. Honeywell
 c. RIB, Inc.
 d. Veris Industries

2. Sensing range 0.5 – 250 Amps.
3. Output 0.3 A @ 200 VAC/VDC / 0.15 A @ 300 VAC/VDC
4. Operating frequency 40 Hz -1 kHz.
5. Operating Temperature 5-104 deg. F (-15 – 40 deg. C), Operating Humidity 0-95% non-condensing
6. Approvals CE, UL.

D. Current Sensors: Solid state, split core linear current sensors shall be provided where specified.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. ACI
 b. Honeywell
 c. RIB, Inc.
 d. Veris Industries

2. Linear output of 0-5 VDC, 0-10 VDC, or 4-20 mA.
3. Scale sensors so that average operating current is between 20-80% full scale.
4. Accuracy plus or minus 1.0% (5-100% full scale)
5. Operating frequency 50-600 Hz.
6. Operating Temperature 5-104 deg. F (-15 – 40 deg. C), Operating Humidity 0-95% non-condensing
7. Approvals CE, UL.

E. Water Flow Meters: Water flow meters shall be axial turbine style flow meters which translate liquid motion into electronic output signals proportional to the flow sensed.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Fluid Components International
 b. BelimoMeters
 c. Onicon Meters

2. Flow sensing turbine rotors shall be non-metallic and not impaired by magnetic drag.
3. Flow meters shall be ‘insertion’ type complete with ‘hot-tap’ isolation valves to enable sensor removal without water supply system shutdown.

F. Low Temperature Limit Switches. Safety low limit shall be manual reset twenty foot limited fill type responsive to the coolest section of its length.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Honeywell
 b. Johnson Controls
 c. TAC
 2. Low Limit Setpoint shall be adjustable between 20 and 60 deg. F. (-5 and 15 deg. C.)
 3. Switch enclosure shall be dustproof and moisture-proof.

G. High Temperature Limit Switches. Safety high limit (fire stats) shall be manual reset type.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Honeywell
 b. Johnson Controls
 c. TAC
 2. High Limit Setpoint shall be adjustable between 100 and 240 deg. F. (38 and 116 deg. C.)
 3. Switch enclosure shall be dustproof and moisture-proof.

H. CO2 Sensors.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Honeywell
 b. TelAire
 c. Vaisala
 d. Senva
 2. Carbon Dioxide sensors shall be 0-10 Vdc, 2-10 Vdc, or 4-20 mA linear analog output type, with corrosion free gold-plated non-dispersive infrared sensing, designed for duct or wall mounting.
 3. Sensor shall incorporate internal diagnostics for power, sensor, analog output checking, and automatic background calibration algorithm for reduced maintenance. Sensor range shall be 0-2000 PPM with +/- 75 PPM accuracy at full scale.
 4. Where specified, sensor shall have an LCD display that displays the sensor reading and status.

I. Differential Pressure Sensors
 1. Manufacturers:
 a. Senva
 b. Honeywell
 c. RIB, Inc.
 d. Veris Industries

J. Humidity Sensors.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Honeywell
 b. Mamac
 c. TAC
2. Humidity transducer shall be accurate to +/- 3% between 20-95% RH NIST traceable calibration.
3. Sensors shall have a field selectable output of 0-10 Vdc, 0-5 Vdc, or 4-20 mA.
4. Sensors shall provide field calibration option using non-interacting zero and span potentiometers, and/or toggle switches that increment or decrement the RH value in steps of 0.5% RH.
5. Accuracy of the sensor shall not be adversely affected by condensation.

K. Control Valves: (Globe Type) Control valves shall be 2-way or 3-way pattern as shown constructed for tight shutoff and shall operate satisfactorily against system pressures and differentials.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Honeywell
 b. Belimo
 c. Siemens Building Technologies
 d. TAC

2. Two-position valves shall be line size.
3. Proportional control valves shall be sized for a nominal pressure drop of 5.0 psi at rated flow (except as may be noted on the drawings). Manufacturer's specified maximum differential pressure shall not be exceeded in order to prevent cavitation.
4. Two-way proportional valves shall have equal percentage flow characteristics. Three-way valves shall have equal percentage flow characteristics straight through, and linear through the bypass. Rangeability shall be 50:1 or greater.
5. Provide valve position indicator and a method to operate valves manually during system start-up, or actuator power loss or failure on all valves.
6. Leakage rate shall be no more than ANSI Class III (for heating) or ANSI Class IV (for cooling).
7. Valves 1/2 inch through 3 inches shall be screwed pattern except where solder connections are specified for valves 1/2 or 3/4 inches.
8. Three-way valve bypass ports shall be of Cv to provide constant flow through the control loop.
9. Two-way valves shall close off against the net differential pressure resulting from the maximum head pressure of the system pumps less all loop pressure losses. Three-way valves shall close off against the difference in head pressure between the controlled load and the bypass line.
10. Valves 2-1/2 inch and larger shall be flanged and ANSI/ASME-rated to withstand the pressures and temperatures specified.
11. Valves shall have stainless-steel stems and spring loaded Teflon packing with replaceable discs.

L. Butterfly Control Valves: Where specified, butterfly control valves 2” to 20” in size shall be cast iron body type for 2-way applications and constructed for tight shutoff and shall operate satisfactorily against system pressures and differentials. Three-way applications shall consist of 2-way valves assembled to a "Tee" fitting with common actuators and operating linkage.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Bray
 b. Honeywell
 c. Belimo
 d. Tyco International

2. Valves shall have tapped lugs for standard flange connection, and meet ANSI/ASME requirements to withstand the pressures and temperatures encountered.

3. Valve shall have a corrosion, ultra-violet, and wear-resistant coating for outdoor applications.

4. Valves shall be designed for isolation and the absence of downstream piping at rated differential pressure.

5. Proportional control valves shall be sized for a nominal pressure drop of 5.0 psid at rated flow (except as may be noted on the drawings) up to a maximum stroke of 60° disk rotation. Manufacturer's maximum fluid velocity shall not be exceeded in order to prevent cavitation.

6. Valves shall be rated for bubble tight shutoff at no less than 150 psi differential pressure for full cut valves, or 50 psi for under cut valves.

7. Valve stems shall be stainless steel, with inboard top and bottom bearings, and an external corrosion resistant top bearing to absorb actuator side thrust.

8. Actuator shall be available with NEMA 4X (IP65) rated enclosure suitable for outdoor installation.

9. Valves shall be tagged with Cv rating and model number.

M. Variable Frequency Drives.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. ABB
 b. Honeywell
 c. Schneider Electric

2. Variable frequency drives shall be UL listed and sized for the power and loads applied.

3. Drives shall include built-in radio frequency interference (RFI) filters and be constructed to operate in equipment rooms and shall not be susceptible to electromagnetic disturbances typically encountered in such environments. Similarly, the drives must not excessively disturb the environment within which it is used.

4. VFDs shall be installed in strict conformance to the manufacturer’s installation instructions, and shall be rated to operate over a temperature range of 14 to 104 F.

5. VFD automatic operation shall be suitable for an analog input signal compatible with the digital controller output.

6. Each VFD shall be fan cooled and have an integral keypad and alphanumeric display unit for user interface.
7. The display unit keypad shall allow setting operational parameters including minimum and maximum frequency, and acceleration and deceleration times. The display shall offer user monitoring of frequency, unit temperature, motor speed, current, torque, power, voltage, and temperature.

N. Actuators, General. All automatically controlled devices, unless specified otherwise elsewhere, shall be provided with actuators sized to operate their appropriate loads with sufficient reserve power to provide smooth modulating action or two-position action and tight close-off. Valves shall be provided with actuators suitable for floating or analog signal control as required to match the controller output. Actuators shall be power failure return type where valves or dampers are required to fail to a safe position and where specified.

O. Non-Spring Return Low Torque Direct Coupled 35 & 70 lb-in Actuators. Actuators shall be 35 or 70 lb-in. with strokes adjustable for 45, 60, or 90 degree rotation applications and designed for operation between 20 and 125 F.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Honeywell
 b. TAC
 c. Belimo
2. Each actuator shall also have a minimum position adjustable rotation of 0 to 30 degrees.
3. Actuators shall be for floating or two position (ML 6161 or ML6174) control, or for 4-20 mA or 2-10Vdc (ML7161 or ML7174) input signals.
4. Analog control actuators shall have a cover mounted direct/reverse acting switch.
5. Actuator motor shall be magnetically coupled or shall have limit switch stops to disengage power at the ends of the stroke.
6. Actuators shall be direct connected (no linkages) and provided with a manual declutch for manual positioning.
7. Actuators shall have NEMA 1 environmental protection rating and be 24 volt and UL listed with UL94-5V plenum requirement compliance.

P. Non-Spring Return High Torque 177 and 300 lb-in Actuators. Actuators shall be UL listed 24 Vac in NEMA 2 enclosures designed for operation between -5 and 140 F.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Honeywell
 b. TAC
 c. Belimo
2. Rotation direction shall be switch selectable.
3. Minimum design life of actuators shall be for 1,500,000 repositions and for 60,000 open-close cycles.
4. Actuators shall be suitable for the controller output signals encountered, floating or analog, and shall have full cycle timing of 95 seconds.
5. Actuators shall be direct connected (no linkages) and provided with a manual declutch for manual positioning.

Q. Spring Return Direct Coupled Actuators. Actuators shall have torque ratings of 44lb-in., 88 lb-in., or 175 lb-in. Actuators shall be modulating 90 seconds nominal timing or two-position 45 seconds nominal timing types with strokes for 90 degree rotation applications and designed for operation between -40 and 140 F.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Honeywell
 b. Belimo
 c. TAC
 2. Each torque rating group shall have optionally selected control types, floating control, 2-position 24 Vac, 2-position line voltage, or analog input which is switch selectable as 0-10Vdc, 10-0 Vdc, 2-10 Vdc, or 10-2 Vdc.
 3. Actuator spring return direction (open or closed) shall be easily reversed in the field, and actuators shall spring return in no greater than 20 seconds.
 4. Actuators shall be direct connected (no linkages), and shall have integral position indication.
 5. Actuators shall have NEMA 2 environmental protection rating, and UL approved and plenum rated per UL873.
 6. Each actuator shall be provided with a manual power-off positioning lever for manual positioning during power loss or system malfunctions, including a gear-train lock to prevent spring action.

PART 3 Temperature Control Panels: Furnish temperature control panels of code gauge steel with locking doors for mounting all devices as shown.

PART 4 EXECUTION

4.1 INSTALLATION
A. All work described in this section shall be performed by system integrators or contractors that have a successful history in the design and installation of integrated control systems. The installing office shall have a minimum of five years of integration experience and shall provide documentation in the submittal package verifying the company's experience.
B. Install system and materials in accordance with manufacturer’s instructions, and as detailed on the project drawing set.
C. Drawings of the TCS and FMCS network are diagrammatic only and any apparatus not shown, but required to make the system operative to the complete satisfaction of the Architect shall be furnished and installed without additional cost.
D. Line and low voltage electrical connections to control equipment shown specified or shown on the control diagrams shall be furnished and installed by this contractor in accordance with these specifications.
E. Equipment furnished by the HVAC Contractor that is normally wired before installation shall be furnished completely wired. Control wiring normally performed in the field will be furnished and installed by this contractor.

4.2 WIRING

A. All electrical control wiring and power wiring to the control panels, NAC, computers and network components shall be the responsibility of the this contractor.

B. The electrical contractor (Div. 16) shall furnish all power wiring to electrical starters and motors.

C. All wiring shall be in accordance with the Project Electrical Specifications (Division 16), the National Electrical Code and any applicable local codes. All FMCS wiring shall be installed in the conduit types specified in the Project Electrical Specifications (Division 16) unless otherwise allowed by the National Electrical Code or applicable local codes. Where FMCS plenum rated cable wiring is allowed it shall be run parallel to or at right angles to the structure, properly supported and installed in a neat and workmanlike manner.

4.3 WARRANTY

A. Equipment, materials and workmanship incorporated into the work shall be warranted for a period of one year from the time of system acceptance.

B. Within this period, upon notice by the Owner, any defects in the work provided under this section due to faulty materials, methods of installation or workmanship shall be promptly repaired or replaced by this contractor at no expense to the Owner.

4.4 ACCEPTANCE TESTING

A. Upon completion of the installation, this contractor shall load all system software and start-up the system. This contractor shall perform all necessary calibration, testing and de-bugging and perform all required operational checks to insure that the system is functioning in full accordance with these specifications.

4.5 OPERATOR INSTRUCTION, TRAINING

A. During system commissioning and at such time acceptable performance of the TCS and FMCS hardware and software has been established this contractor shall provide on-site operator instruction to the owner's operating personnel. Operator instruction shall be done during normal working hours and shall be performed by a competent representative familiar with the system hardware, software and accessories.

B. This contractor shall provide 8 hours of instruction to the owner's designated personnel on the operation of the TCS and FMCS and describe its intended use with respect to the programmed functions specified. Operator orientation of the systems shall include, but not be limited to; the overall operation program, equipment functions (both individually and as part of the total integrated system), commands, systems generation, advisories, and appropriate operator intervention required in responding to the System's operation.

C. The training shall be in three sessions as follows:

1. Warranty Follow Up: One half day (4 hours total), to be scheduled at the request of the owner during the one year warranty period. This session shall cover topics as requested by the owner.
such as; how to add additional points, create and gather data for trends, graphic screen generation or modification of control routines.

PART 5 SEQUENCES OF OPERATION – See plans

5.1 SUMMARY
A. This contractor shall coordinate control functions, such as scheduling and supervisory-level global control, points list, and control sequences needed for this installation. Contractor shall provide written documentation to archive the system operation as accepted by the owner.

PART 6 GRAPHICAL REPRESENTATION POINT LISTS

6.1 SUMMARY
A. The DDC points in this project shall be accessible from the Graphical User Interface (GUI) and/or the Web browser interface (WBI). The supplier of the IDC and IBC devices shall ensure that the points are accessible on their respective networks, by the Network Area Controller (NAC).

B. The graphics shall provide detailed 2 or 3-dimensional building site, 2-dimensional floor plans; and 2 or 3-dimentional equipment illustrations with fan, pump, damper, and valve animation for system operation. Each graphic shall be provided with a tabular “hot button” navigational structure enabling a “one-mouse click” access to other building systems and the return, without the use of the browser “back button”.

C. The graphics shall provide a real-time continuous display of critical points; Outside Air Temperature, Outside Air Relative Humidity, KWH, and KW visible within the HTML frame on all graphic screens.

6.2 GRAPHIC DESCRIPTION
A. Home Page:
 1. The graphic shall provide a geographical overview of the multiple-site enterprise or campus buildings. Each building image shall be a “hot button” to access the building floor plans. The image “hot button” is indicated by a “mouse over” function highlighting the building and changing curser icon, enabling a “one-mouse click” access the building floor plans.

B. Floor Plans:
 1. The graphic shall provide an accurate dimensional layout of the building floor(s); including all rooms, room numbers, walls, elevators, doors, entrances, hallways, and stairwells. Room numbering and naming conventions shall be provided by the architect/engineer.

C. Mechanical Systems:
 1. The graphic shall provide an accurate representation of the system being controlled; including all sensors, heat exchangers, heating and cooling coils, dampers, CW/HW piping and pumps, humidifiers, flow directions, safety devices, actuators, and limit devices with fan, pump, damper, and valve animation for real-time system operation.

END OF SECTION
SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:

1. Hot-water heating piping.
2. Chilled-water piping.
3. Makeup-water piping.
5. Safety-valve-inlet and -outlet piping.

B. See Section 232123 "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.

1.2 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:

2. Chilled-Water Piping: 125 psig at 200 deg F (93 deg C).
3. Makeup-Water Piping: 80 psig (552 kPa) at 150 deg F (66 deg C).
5. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Plastic pipe and fittings with solvent cement.
2. Pressure-seal fittings.
3. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
4. Air control devices.
6. Hydronic specialties.

B. Shop Drawings: Detail, at 1/4 (1:50) scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
International Trade Center HVAC Renovation

1.4 INFORMATIONAL SUBMITTALS
 A. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.6 QUALITY ASSURANCE
 A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS
 A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B)
 B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).
 C. DWV Copper Tubing: ASTM B 306, Type DWV.
 D. Wrought-Copper Fittings: ASME B16.22.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Anvil International, Inc.
 b. S. P. Fittings; a division of Star Pipe Products.
 c. Victaulic Company.
4. Grooved-End Copper Fittings: ASTM B 75 (ASTM B 75M), copper tube or ASTM B 584, bronze casting.
5. Grooved-End-Tube Couplings: Rigid pattern, unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F (110 deg C) for use with housing, and steel bolts and nuts.

E. Wrought-Copper Unions: ASME B16.22.
2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.

F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.

2.3 PLASTIC PIPE AND FITTINGS

A. CPVC Plastic Pipe: ASTM F 441/F 441M, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.

C. PVC Plastic Pipe: ASTM D 1785, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.

2.4 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

F. Solvent Cements for Joining Plastic Piping:
 1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 a. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 c. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

G. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 TRANSITION FITTINGS

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.

 2. Description:
b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.7 VALVES

A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 "General-Duty Valves for HVAC Piping."

B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230900 "Instrumentation and Control for HVAC."

C. Bronze, Calibrated-Orifice, Balancing Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:

 a. Armstrong Pumps, Inc.
 b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 c. Flow Design Inc.
 d. Gerand Engineering Co.
 e. Griswold Controls.
 f. Taco.
 g. Tour & Andersson; available through Victaulic Company.

4. Body: Bronze, ball or plug type with calibrated orifice or venturi.
5. Ball: Brass or stainless steel.
6. Plug: Resin.
7. Seat: PTFE.
8. End Connections: Threaded or socket.
10. Handle Style: Lever, with memory stop to retain set position.

D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:

 a. Armstrong Pumps, Inc.
b. Bell & Gossett Domestic Pump; a division of ITT Industries.
c. Flow Design Inc.
d. Grand Engineering Co.
e. Griswold Controls.
f. Taco.

4. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
5. Ball: Brass or stainless steel.
7. Disc: Glass and carbon-filled PTFE.
8. Seat: PTFE.
11. Handle Style: Lever, with memory stop to retain set position.

E. Diaphragm-Operated, Pressure-Reducing Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 d. Conbraco Industries, Inc.
 e. Spence Engineering Company, Inc.
 f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
4. Body: Bronze or brass.
5. Disc: Glass and carbon-filled PTFE.
7. Stem Seals: EPDM O-rings.
8. Diaphragm: EPT.
9. Low inlet-pressure check valve.
10. Inlet Strainer: removable without system shutdown.
12. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

F. Diaphragm-Operated Safety Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 d. Conbraco Industries, Inc.
 e. Spence Engineering Company, Inc.
 f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
4. Body: Bronze or brass.
5. Disc: Glass and carbon-filled PTFE.
7. Stem Seals: EPDM O-rings.
8. Diaphragm: EPT.
10. Inlet Strainer: removable without system shutdown.
12. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

G. Automatic Flow-Control Valves:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Flow Design Inc.
 b. Griswold Controls.
4. Body: Brass or ferrous metal.
5. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
6. Combination Assemblies: Include bronze or brass-alloy ball valve.
7. Identification Tag: Marked with zone identification, valve number, and flow rate.
8. Size: Same as pipe in which installed.
9. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
10. Minimum CWP Rating: 175 psig (1207 kPa)
2.8 AIR CONTROL DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amtrol, Inc.
2. Armstrong Pumps, Inc.
3. Bell & Gossett Domestic Pump; a division of ITT Industries.
4. Taco.

C. Manual Air Vents:

1. Body: Bronze.
2. Internal Parts: Nonferrous.
3. Operator: Screwdriver or thumbscrew.
4. Inlet Connection: NPS 1/2 (DN 15).
5. Discharge Connection: NPS 1/8 (DN 6).
6. CWP Rating: 150 psig (1035 kPa).

D. Expansion Tanks:

1. Tank: Welded steel, rated for 125-psig (860-kPa) working pressure and 375 deg F (191 deg C) maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gage glass. Tanks shall be factory tested with taps fabricated and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
2. Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainless-steel ball check, 100-gal. (379-L) unit only; sized for compression-tank diameter. Provide tank fittings for 125-psig (860-kPa) working pressure and 250 deg F (121 deg C) maximum operating temperature.
3. Tank Drain Fitting: Brass body, nonferrous internal parts, 125-psig (860-kPa) working pressure and 240 deg F (116 deg C) maximum operating temperature; constructed to admit air to compression tank, drain water, and close off system.

E. In-Line Air Separators:

1. Tank: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.
3. Maximum Operating Temperature: Up to 300 deg F (149 deg C).

2.9 CHEMICAL TREATMENT

A. Bypass Chemical Feeder: Welded steel construction; 125-psig (860-kPa) working pressure; 2-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

B. Ethylene and Propylene Glycol: Industrial grade with corrosion inhibitors and environmental-stabilizer additives for mixing with water in systems indicated to contain antifreeze or glycol solutions.

2.10 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

B. Stainless-Steel Bellow, Flexible Connectors:
 2. End Connections: Threaded or flanged to match equipment connected.
 3. Performance: Capable of 3/4-inch (20-mm) misalignment.
 4. CWP Rating: 150 psig (1035 kPa).
 5. Maximum Operating Temperature: 250 deg F (121 deg C).

C. Expansion fittings are specified in Section 230516 "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground, NPS 2 (DN 50) and smaller, shall be any of the following:
 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 2. Schedule 40 steel pipe; wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings; and threaded joints.

B. Hot-water heating piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be any of the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

C. Chilled-water piping, aboveground, NPS 2 (DN 50) and smaller, shall be any of the following:
1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

D. Chilled-water piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be any of the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

E. Makeup-water piping installed aboveground shall be[either of] the following:
 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

F. Makeup-Water Piping Installed Belowground and within Slabs: Type K (A), annealed-temper copper tubing, wrought-copper fittings, and soldered joints. Use the fewest possible joints.

G. Condensate-Drain Piping: Type M (C), drawn-temper copper tubing, wrought-copper fittings, and soldered joints or Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.

H. Condensate-Drain Piping: Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.

I. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

J. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 2. Outlet: Type K (A), annealed-temper copper tubing with soldered or flared joints.

K. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.

B. Install throttling-duty valves at each branch connection to return main.

C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.

D. Install check valves at each pump discharge and elsewhere as required to control flow direction.

E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with
ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. Install valves according to Section 230523 "General-Duty Valves for HVAC Piping."
Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.

S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 (DN 20) nipple and ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50).

T. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Section 230516 "Expansion Fittings and Loops for HVAC Piping."

U. Identify piping as specified in Section 230553 "Identification for HVAC Piping and Equipment."

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

B. Seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

C. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
4. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
5. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (10 mm).
6. NPS 3 (DN 80): Maximum span, 12 feet (3.7 m); minimum rod size, 3/8 inch (10 mm).
7. NPS 4 (DN 100): Maximum span, 14 feet (4.3 m); minimum rod size, 1/2 inch (13 mm).

E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
5. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
6. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).

F. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.

G. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.
 4. PVC Nonpressure Piping: Join according to ASTM D 2855.

H. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

I. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.

C. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 (DN 50) and larger.

D. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches (1200 mm) above the floor. Install feeder in minimum NPS 3/4 (DN 20) bypass line, from main with full-size, full-port, ball valve in the main between bypass connections. Install NPS 3/4 (DN 20) pipe from chemical feeder drain, to nearest equipment drain and include a full-size, full-port, ball valve.

E. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 1. Install tank fittings that are shipped loose.
 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.
3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Section 230519 "Meters and Gages for HVAC Piping."

3.8 CHEMICAL TREATMENT

A. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

B. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

3.9 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 3. Isolate expansion tanks and determine that hydronic system is full of water.
 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum
International Trade Center HVAC Renovation

yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 232113
SECTION 232123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 2. Close-coupled, end-suction centrifugal pumps.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of pump.
 B. Shop Drawings: For each pump.
 1. Show pump layout and connections.
 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 3. Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Armstrong Pumps Inc.
 2. Grundfos Pumps Corporation.
 3. ITT Corporation; Bell & Gossett.
 4. PACO Pumps.
 5. Patterson Pump Co.; a subsidiary of the Gorman-Rupp Co.
 6. TACO Incorporated.
International Trade Center HVAC Renovation

C. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, inline pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically.

D. Pump Construction:

1. Casing: Radially split, cast iron, with replaceable bronze wear rings, drain plug at bottom and air vent at top of volute, threaded gage tappings at inlet and outlet, and threaded companion-flange connections.
2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
3. Pump Shaft: Steel, with copper-alloy shaft sleeve.
4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.
5. Seal: Packing seal consisting of stuffing box with a minimum of four rings of graphite-impregnated braided yarn with bronze lantern ring between center two graphite rings, and bronze packing gland.

2.2 CLOSE-COUPLED, END-SUCTION CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Armstrong Pumps Inc.
2. Crane Pumps & Systems.
3. ITT Corporation; Bell & Gossett.
4. ITT Corporation; Goulds Pumps.
5. PACO Pumps.
7. Peerless Pump Company.
8. TACO Incorporated.

C. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, end-suction pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally.

D. Pump Construction:

1. Casing: Radially split, cast iron, with replaceable bronze wear rings, drain plug at bottom and air vent at top of volute, threaded gage tappings at inlet and outlet, and threaded companion-flange connections.
2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
3. Pump Shaft: Steel, with copper-alloy shaft sleeve.
4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.
5. Pump Bearings: Permanently lubricated ball bearings.

2.3 PUMP SPECIALTY FITTINGS

A. Suction Diffuser:
 1. Angle pattern.
 2. 125-psig pressure rating, cast-iron body and end cap, pump-inlet fitting.
 3. Bronze startup and bronze or stainless-steel permanent strainers.
 4. Bronze or stainless-steel straightening vanes.
 5. Drain plug.
 6. Factory-fabricated support.

B. Triple-Duty Valve:
 1. Angle or straight pattern.
 2. 125-psig pressure rating, cast-iron body, pump-discharge fitting.
 3. Drain plug and bronze-fitted shutoff, balancing, and check valve features.
 4. Brass gage ports with integral check valve and orifice for flow measurement.

PART 3 - EXECUTION

3.1 PUMP INSTALLATION

A. Comply with HI 1.4.
B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.
C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
D. Automatic Condensate Pump Units: Install units for collecting condensate and extend to open drain.
E. Equipment Mounting: Install base-mounted pumps on 6” tall steel frame secured to the building structure.
F. Equipment Mounting: Install base-mounted pumps on steel equipment base(s) using elastomeric pads.
 1. Minimum Deflection: 1/4 inch (6 mm).
G. Equipment Mounting: Install in-line pumps with continuous-thread hanger rods and spring hangers with vertical-limit stop of size required to support weight of in-line pumps.
H. Engage a factory-authorized service representative to perform alignment service.

I. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.

J. Comply with pump and coupling manufacturers' written instructions.

K. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 232213 "Steam and Condensate Heating Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to pump, allow space for service and maintenance.

C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

E. Install triple-duty valve on discharge side of pumps.

F. Install suction diffuser and shutoff valve on suction side of pumps.

G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.

H. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.

I. Install check valve and gate or ball valve on each condensate pump unit discharge.

J. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

K. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 232123
SECTION 232500 - HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following HVAC water-treatment systems:

1. Bypass chemical-feed equipment and controls.
2. Biocide chemical-feed equipment and controls.
3. Chemical treatment test equipment.
4. HVAC water-treatment chemicals.

1.2 PERFORMANCE REQUIREMENTS

A. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or the environment.

B. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.

C. Closed hydronic systems, including hot-water heating and chilled water, shall have the following water qualities:

1. pH: Maintain a value within 9.0 to 10.5.
2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
3. Boron: Maintain a value within 100 to 200 ppm.
4. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
5. Soluble Copper: Maintain a maximum value of 0.20 ppm.
6. TDS: Maintain a maximum value of 10 ppm.
9. Microbiological Limits:
 a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/ml.
 b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/ml.
 c. Nitrate Reducers: Maintain a maximum value of 100 organisms/ml.
 d. Sulfate Reducers: Maintain a maximum value of 0 organisms/ml.
 e. Iron Bacteria: Maintain a maximum value of 0 organisms/ml.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to HVAC systems. Include plans, elevations, sections, details, and attachments to other work.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

B. Other Informational Submittals:

1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in the "Performance Requirements" Article above.

1.5 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Wingert
2. Anderson Chemical Co., Inc.
4. Barclay Chemical Co.; Water Management, Inc.
5. Boland Trane Services.
6. GE Betz.
7. ONDEO Nalco Company.
8. Watcon, Inc.
2.2 MANUAL CHEMICAL-FEED EQUIPMENT

A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch (89-mm) fill opening in the top, and NPS 3/4 (DN 20) bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.

1. Capacity: 2 gal. (7.6 L).

2.3 CHEMICAL TREATMENT TEST EQUIPMENT

A. Test Kit: Manufacturer-recommended equipment and chemicals in a wall-mounting cabinet for testing pH, TDS, inhibitor, chloride, alkalinity, and hardness; sulfite and testable polymer tests for high-pressure boilers, and oxidizing biocide test for open cooling systems.

B. Corrosion Test-Coupon Assembly: Constructed of corrosive-resistant material, complete with piping, valves, and mild steel and copper coupons. Locate copper coupon downstream from mild steel coupon in the test-coupon assembly.

1. Two station rack for closed-loop systems.

2.4 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment, and that can attain water quality specified in Part 1 "Performance Requirements" Article.

B. Water Softener Chemicals:

1. Mineral: High-capacity, sulfonated-polystyrene ion-exchange resin that is stable over entire pH range with good resistance to bead fracture from attrition or shock. Resin exchange capacity minimum 30,000 grains/cu. ft. (69 kg/cu. m) of calcium carbonate of resin when regenerated with 15 lb (6.8 kg) of salt.
2. Salt for Brine Tanks: High-purity sodium chloride, free of dirt and foreign material. Rock and granulated forms are not acceptable.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.
3.2 INSTALLATION

A. Install chemical application equipment on steel bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.

B. Install water testing equipment on wall near water chemical application equipment.

C. Install interconnecting control wiring for chemical treatment controls and sensors.

D. Mount sensors and injectors in piping circuits.

E. Bypass Feeders: Install in closed hydronic systems, including hot-water heating and chilled water, and equipped with the following:
 1. Install bypass feeder in a bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
 2. Install water meter in makeup water supply.
 3. Install test-coupon assembly in bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
 4. Install a gate or full-port ball isolation valves on inlet, outlet, and drain below feeder inlet.
 5. Install a swing check on inlet after the isolation valve.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Section 232113 "Hydronic Piping."

D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Section 230523 "General-Duty Valves for HVAC Piping."

E. Refer to Section 221119 "Domestic Water Piping Specialties" for backflow preventers required in makeup water connections to potable-water systems.

F. Confirm applicable electrical requirements in electrical Sections for connecting electrical equipment.

G. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

H. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC systems' startup procedures.
4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
7. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
8. Repair leaks and defects with new materials and retest piping until no leaks exist.

D. Remove and replace malfunctioning units and retest as specified above.

E. At four-week intervals following Substantial Completion, perform separate water analyses on hydronic systems to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section. Submit written reports of water analysis advising Owner of changes necessary to adhere to Part 1 "Performance Requirements" Article.

F. Comply with ASTM D 3370 and with the following standards:

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.

END OF SECTION 232500
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Rectangular ducts and fittings.
2. Round ducts and fittings.
4. Sealants and gaskets.
5. Hangers and supports.

B. Related Sections:

1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Section 233119 "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
3. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7. Retain one of three subparagraphs below if retaining "SMACNA's 'Seismic Restraint Manual: Guidelines for Mechanical Systems'" option in paragraph above

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:
International Trade Center HVAC Renovation

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

C. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations for selecting hangers and supports and seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:

 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.

B. Welding certificates.
1.5 QUALITY ASSURANCE

B. Welding Qualifications: Qualify procedures and personnel according to the following:

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. McGill AirFlow LLC.
 b. SEMCO Incorporated.
 c. Sheet Metal Connectors, Inc.
 d. Spiral Manufacturing Co., Inc.
 e. Or other approved manufacturer.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. **Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter:** Flanged.

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. **Galvanized Coating Designation:** G90 (Z275).
2. **Finishes for Surfaces Exposed to View:** Mill phosphatized.

C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
International Trade Center HVAC Renovation

D. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.4 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: [3 inches (76 mm)] [4 inches (102 mm)] [6 inches (152 mm)].
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electro galvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.
3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.

2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.

D. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.7 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.8 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units
 a. Pressure Class: Positive 2-inch wg (500 Pa).
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 2-inch wg (500 Pa).
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 12.
3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 4-inch wg (1000 Pa).
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

C. Return, Outside Air, and Exhaust Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, mini-splits, and Terminal Units:
 a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg (750 Pa).
 b. Minimum SMACNA Seal Class: A
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

D. Intermediate Reinforcement:

E. Elbow Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm (5 m/s) or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s):
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm (7.6 m/s) or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."

a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
b. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."

a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbow with less than 90-degree change of direction have proportionately fewer segments.

1) Velocity 1000 fpm (5 m/s) or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
2) Velocity 1000 to 1500 fpm (5 to 7.6 m/s): 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
3) Velocity 1500 fpm (7.6 m/s) or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
4) Radius-to-Diameter Ratio: 1.5.

b. Round Elbows, 12 Inches (305 mm) and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches (356 mm) and Larger in Diameter: Standing seam.

F. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."

a. Rectangular Main to Rectangular Branch: 45-degree entry.
b. Rectangular Main to Round Branch: Spin in.

2. Round: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.

a. Velocity 1000 fpm (5 m/s) or Lower: 90-degree tap.
b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s): Conical tap.
c. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

END OF SECTION 233113
SECTION 233600 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Shutoff, single-duct air terminal units.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For air terminal units. Include plans, elevations, sections, details, and attachments to other work.

C. Delegated-Design Submittal:
 1. Materials, fabrication, assembly, and spacing of hangers and supports.
 2. Design Calculations: Calculations for selecting hangers and supports and seismic restraints.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Environmental Technologies, Inc.
 2. Price Industries.
 3. Titus.

C. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.

D. Casing: 0.034-inch (0.85-mm) steel, single wall.
 1. Casing Lining: Adhesive attached, 1-inch- (25-mm-) thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 a. Cover liner with nonporous foil.
 b. Cover liner with nonporous foil and perforated metal.
 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 3. Air Outlet: S-slip and drive connections.
 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 1. Maximum Damper Leakage: ARI 880 rated, 2 percent of nominal airflow at 3-inch wg (750-Pa) inlet static pressure.

F. Attenuator Section: 0.034-inch (0.85-mm) steel sheet.
 1. Lining: Adhesive attached, 1-inch- (25-mm-) thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a
maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.

a. Cover liner with nonporous foil.
b. Cover liner with nonporous foil and perforated metal.

2. Lining: Adhesive attached, 3/4-inch- (19-mm-) thick, polyurethane foam insulation complying with UL 181 erosion requirements, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.

3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

G. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.

H. Direct Digital Controls: Bidirectional damper operators and microprocessor-based controller and room sensor. Control devices shall be compatible with temperature controls specified in Section 230900 "Instrumentation and Control for HVAC" and shall have the following features:

1. Damper Actuator: 24 V, powered closed, powered open.
2. Terminal Unit Controller: Pressure-independent, variable-air-volume controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:

a. Occupied and unoccupied operating mode.
b. Remote reset of airflow or temperature set points.
c. Adjusting and monitoring with portable terminal.
d. Communication with temperature-control system specified in Section 230900 "Instrumentation and Control for HVAC."

3. Room Sensor: Wall mounted, with temperature set-point adjustment and access for connection of portable operator terminal.

2.3 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Steel Cables: Galvanized steel complying with ASTM A 603.

D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

E. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
F. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

2.4 SOURCE QUALITY CONTROL

A. Factory Tests: Test assembled air terminal units according to ARI 880.
 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, heater KW and voltage, and ARI certification seal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

C. Install wall-mounted thermostats.

3.2 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches (100 mm) thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches (100 mm) thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

A. Install piping adjacent to air terminal unit to allow service and maintenance.
B. Connect ducts to air terminal units according to Section 233113 "Metal Ducts"

C. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Air terminal unit will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
3. Verify that controls and control enclosure are accessible.
4. Verify that control connections are complete.
5. Verify that nameplate and identification tag are visible.
6. Verify that controls respond to inputs as specified.
3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 233600
SECTION 235233 - WATER-TUBE BOILERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes packaged, factory-fabricated and -assembled, gas-fired, finned water-tube boilers, trim, and accessories for generating hot water.
B. This Section includes packaged, water-tube boilers, trim, and accessories for generating hot water with the following configurations, burners, and outputs:
 1. Factory assembled.
 2. Atmospheric gas burner.

1.3 ACTION SUBMITTALS
A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings: For boilers, boiler trim, and accessories. Include plans, elevations, sections, details, and attachments to other work.
 1. Design calculations and vibration isolation base details, signed and sealed by a qualified professional engineer.
 a. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 b. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails and equipment mounting frames.
 2. Wiring Diagrams: Power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Manufacturer Seismic Qualification Certification: Submit certification that boiler, accessories, and components will withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment." Include the following:
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Source quality-control test reports.

C. Field quality-control test reports.

D. Warranty: Special warranty specified in this Section.

E. Other Informational Submittals:
 2. Startup service reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For boilers, components, and accessories to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.

C. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to "Gas and Oil Fired Boilers - Minimum Efficiency Requirements."

E. I=B=R Compliance: Boilers shall be tested and rated according to HI's "Rating Procedure for Heating Boilers" and "Testing Standard for Commercial Boilers," with I=B=R emblem on a nameplate affixed to boiler.

F. UL Compliance: Test boilers for compliance with UL 795, "Commercial-Industrial Gas Heating Equipment." Boilers shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace heat exchangers damaged by thermal shock and vent dampers of boilers that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Heat Exchangers: 10 years from date of Substantial Completion.
2. Warranty Period for Vent Dampers: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 FINNED WATER-TUBE BOILERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:

1. Laars Heating Systems; a division of Waterpik Technologies, Inc.
2. Lochinvar Corporation.
3. Precision Boilers.
4. Raypak.
5. RBI Water Heaters.
7. Weben-Jarco, Inc.

D. Description: Factory-fabricated, -assembled, and -tested boiler with tubes sealed into headers pressure tight, and set on a steel base; including insulated jacket, flue-gas vent, combustion-air intake connections, water supply and return connections, and controls.

E. Heat Exchanger:
1. Finned copper tubing with stainless-steel baffles.
2. Cast-iron headers.
3. Two-pass, vertical configuration.
4. Tubes shall be sealed in header by welding.

F. Combustion Chamber Internal Insulation: Interlocking panels of refractory insulation, high-temperature cements, mineral fiber, and ceramic refractory tile for service temperatures to 2000 deg F (1100 deg C).

G. Casing:
1. Jacket: Sheet metal, with snap-in or interlocking closures.
2. Control Compartment Enclosure: NEMA 250, Type 1A.
4. Insulation: Minimum 1-inch- (25-mm-) thick, mineral-fiber insulation surrounding the heat exchanger.
6. Combustion-Air Connection: Inlet duct collar and sheet metal closure over burner compartment.
7. Mounting base to secure boiler.
 a. Seismic Fabrication Requirements: Fabricate mounting base and attachment to boiler pressure vessel, accessories, and components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment" when mounting base is anchored to building structure.

H. Burner:
2. Vertical Burner:
 a. High-temperature stainless steel to fire in a 360-degree pattern.
3. Gas Train: Control devices and full-modulation control sequence shall comply with requirements in AGA and UL. In addition to these requirements, include shutoff cock, pressure regulator, and control valve.
5. Pilot: Intermittent-electric-spark pilot ignition with 100 percent main-valve and pilot-safety shutoff with electronic supervision of burner flame.

I. Trim:
1. Aquastat Controllers: Operating, firing rate, and high limit.
2. Safety Relief Valve: ASME rated.
3. Pressure and Temperature Gage: Minimum 3-1/2-inch- (89-mm-) diameter, combination water-pressure and -temperature gage. Gages shall have operating-pressure and -temperature ranges so normal operating range is about 50 percent of full range.
6. Circulation Pump: Non-overloading, in-line pump with split-capacitor motor having thermal-overload protection and lubricated bearings; designed to operate at specified boiler pressures and temperatures.

J. Controls:

1. Refer to Section 230900 "Instrumentation and Control for HVAC."
2. Boiler operating controls shall include the following devices and features:
 a. Control transformer.
 b. Motorized Vent Damper: Interlocked with burner to open before burner starts. If damper fails to open, stop burner operation.
 c. Set-Point Adjust: Set points shall be adjustable.
 d. Sequence of Operation: Electric, factory-fabricated and field-installed panel to control burner firing rate to maintain space temperature in response to thermostat with heat anticipator located in heated space.
 e. Sequence of Operation: Electric, factory-fabricated and field-installed panel to control burner firing rate to reset supply-water temperature inversely with outside-air temperature. At 0 deg F (minus 17 deg C) outside-air temperature, set supply-water temperature at 200 deg F (93 deg C); at 60 deg F (15 deg C) outside-air temperature, set supply-water temperature at 140 deg F (60 deg C).
 f. Include automatic, alternating-firing sequence for multiple boilers to ensure maximum system efficiency throughout the load range and to provide equal runtime for boilers.

3. Burner Operating Controls: To maintain safe operating conditions, burner safety controls limit burner operation.
 a. High Cutoff: Manual reset stops burner if operating conditions rise above maximum boiler design temperature.
 d. Rollout Safety Switch: Factory mounted on boiler combustion chamber.
 e. Audible Alarm: Factory mounted on control panel with silence switch; shall sound alarm for above conditions.

4. Building Automation System Interface: Factory install hardware and software to enable building automation system to monitor, control, and display boiler status and alarms.
 b. Control: On/off operation, hot water supply temperature set-point adjustment.
 c. A communication interface with building automation system shall enable building automation system operator to remotely control and monitor the boiler from an operator workstation. Control features available, and monitoring points displayed, locally at boiler control panel shall be available through building automation system.
2.2 SOURCE QUALITY CONTROL

A. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

B. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.

C. Allow Owner access to source quality-control testing of boilers. Notify Architect 14 days in advance of testing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Before boiler installation, examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting boiler performance, maintenance, and operations.

1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.

B. Examine mechanical spaces for suitable conditions where boilers will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

A. Install boilers level on concrete base. Concrete materials and installation requirements are specified with concrete.

B. Vibration Isolation: Elastomeric isolator pads with a minimum static deflection of 0.25 inch (6.35 mm). Vibration isolation devices and installation requirements are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

C. Install gas-fired boilers according to NFPA 54.

D. Install oil-fired boilers according to NFPA 31.

E. Assemble boiler tubes in sequence and seal each tube joint.

F. Assemble and install boiler trim.

G. Install electrical devices furnished with boiler but not specified to be factory mounted.

H. Install control wiring to field-mounted electrical devices.
3.3 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to boiler to allow service and maintenance.

C. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.

D. Connect oil piping full size to burner inlet with shutoff valve and union.

E. Connect hot-water piping to supply- and return-boiler tappings with shutoff valve and union or flange at each connection.

F. Connect steam and condensate piping to supply-, return-, and blowdown-boiler tappings with shutoff valve and union or flange at each connection.

G. Install piping from safety relief valves to nearest floor drain.

H. Install piping from safety valves to drip-pan elbow and to nearest floor drain.

I. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.

J. Boiler Flue Venting:
 1. Install venting kit and combustion-air intake.

K. Connect breeching to full size of boiler outlet. Comply with requirements in Section 235100 "Breechings, Chimneys, and Stacks" for venting materials.

L. Install flue-gas recirculation duct from vent to burner. Comply with requirements in Section 235100 "Breechings, Chimneys, and Stacks" for recirculation duct materials.

M. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

N. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
1. Perform installation and startup checks according to manufacturer's written instructions.
2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 a. Burner Test: Adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency.
 b. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level, and water temperature.
 c. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
C. Remove and replace malfunctioning units and retest as specified above.
D. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.
E. Performance Tests:
 1. Engage a factory-authorized service representative to inspect component assemblies and equipment installations, including connections, and to conduct performance testing.
 2. Boilers shall comply with performance requirements indicated, as determined by field performance tests. Adjust, modify, or replace equipment in order to comply.
 3. Perform field performance tests to determine the capacity and efficiency of the boilers.
 a. For dual-fuel boilers, perform tests for each fuel.
 b. Test for full capacity.
 c. Test for boiler efficiency at low fire 60, 40 and 20 percent of full capacity. Determine efficiency at each test point.
 4. Repeat tests until results comply with requirements indicated.
 5. Provide analysis equipment required to determine performance.
 6. Provide temporary equipment and system modifications necessary to dissipate the heat produced during tests if building systems are not adequate.

3.5 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain boilers

END OF SECTION 235233
SECTION 236423 – AIR COOLED WATER CHILLER
PART 1 - GENERAL

1.01 SCOPE
A. The requirements of the General Conditions, Supplementary Conditions, Division 1, and Drawings apply to all Work herein.
B. Provide Microprocessor controlled, multiple-scroll compressor, air-cooled, liquid chillers of the scheduled capacities as shown and indicated on the Drawings, including but not limited to:
 1. Chiller package with ZERO Ozone Depletion Potential Refrigerant R-410A
 2. Electrical power and control connections
 3. Chilled water connections
 4. Factory Start-Up
 5. Charge of refrigerant and oil.

1.02 QUALITY ASSURANCE
A. Products shall be Designed, Tested, Rated and Certified in accordance with, and installed in compliance with applicable sections of the following Standards and Codes:
 2. ASHRAE 90.1 – Energy Efficiency compliance.
 4. ASME Boiler & Pressure Vessel Code, Section VIII, Division 1.
 5. ARI Standard 550/590 – Positive Displacement Compressors and Air Cooled Rotary Screw Water-Chilling Packages.
 6. Conform to Intertek Testing Services, formerly ETL, for construction of chillers and provide ETL/cETL Listing label.
 7. Manufactured in facility registered to ISO 9002.
 8. OSHA – Occupational Safety and Health Act
B. Factory Test: Chiller shall be pressure-tested, evacuated and fully charged with refrigerant and oil, and shall be factory operational run tested with water flowing through the vessel.
C. Chiller manufacturer shall have a factory trained and supported service organization that is within a 50 mile radius of the site.
D. Warranty: Manufacturer shall warrant all equipment and material of its manufacture against defects in workmanship and material for a period of one year from date of initial start-up or eighteen (18) months from date of shipment, whichever occurs first.

1.03 DELIVERY AND HANDLING
A. Unit shall be delivered to job site fully assembled and charged with refrigerant and oil by the Manufacturer.
B. Unit shall be stored and handled per Manufacturer’s instructions.
C. Protect the chiller and its accessories from the weather and dirt exposure during shipment.
D. During shipment, provide protective covering over vulnerable components. Fit nozzles and open ends with plastic enclosures.

PART 2 - PRODUCTS

2.01 CHILLER MATERIALS AND COMPONENTS
A. General: Install and commission, as shown on the schedules and plans, factory assembled, charged, and tested air cooled scroll compressor chiller(s) as specified herein. Chiller shall be designed, selected, and constructed using a refrigerant with Flammability rating of “1”, as defined by ANSI/ASHRAE STANDARD - 34 Number Designation and Safety Classification of Refrigerants. Chiller shall include not less than two refrigerant circuits above 35 tons (123kW), scroll compressors, direct-expansion-type evaporator, air-cooled condenser, refrigerant, lubrication system, interconnecting wiring, safety and operating controls including capacity controller, control center, motor starting components, and special features as specified herein or required for safe, automatic operation.
B. Cabinet: External structural members shall be constructed of heavy gauge, galvanized steel coated with baked on powder paint which, when subject to ASTM B117, 1000 hour, 5% salt spray test, yields minimum ASTM 1654 rating of “6”.

C. Service Isolation valves: Service discharge (ball type) isolation valves are added to unit per system. This includes a system high-pressure relief valve in compliance with ASHRAE15.

D. Pressure Transducers and Readout Capability
 1. Discharge Pressure Transducers: Permits unit to sense and display discharge pressure.
 2. Suction Pressure Transducers: Permits unit to sense and display suction pressure.
 3. High Ambient Control: Allows units to operate when the ambient temperature is above 115°F (46°C).
 Includes discharge pressure transducers.

2.02 COMPRESSORS
Compressors: Shall be hermetic, scroll-type, including:
 1. Compliant design for axial and radial sealing
 2. Refrigerant flow through the compressor with 100% suction cooled motor.
 3. Large suction side free volume and oil sump to provide liquid handling capability.
 4. Compressor crankcase heaters to provide extra liquid migration protection.
 5. Annular discharge check valve and reverse vent assembly to provide low-pressure drop, silent shutdown and reverse rotation protection.
 6. Initial oil charge.
 7. Oil level sightglass.
 8. Vibration isolator mounts for compressors.
 10. Compressor Motor overloads capable of monitoring compressor motor current. Provides extra protection against compressor reverse rotation, phase-loss and phase-imbalance

2.03 REFRIGERANT CIRCUIT COMPONENTS
Each refrigerant circuit shall include: liquid line shutoff valve with charging port, low side pressure relief device, filter-drier, solenoid valve, sight glass with moisture indicator, thermostatic expansion valves, and flexible, closed-cell foam insulated suction line and suction pressure transducer.

2.04 HEAT EXCHANGERS
A. Evaporator:
 1. Direct expansion type with refrigerant inside high efficiency copper tubes, chilled liquid forced over the tubes by brass baffles.
 2. Constructed, tested, and stamped in accordance with applicable sections of ASME pressure vessel code for minimum 450 psig (3103kPa) refrigerant side design working pressure and 150 PSIG (1034 kPa) water side design working pressure.
 3. Shell covered with 3.4” (19mm), flexible, closed cell insulation, thermal conductivity of 0.26k ([BTU/HR-Ft2-°F]/in.) maximum. Water nozzles with grooves for mechanical couplings, and insulated by Contractor after pipe installation.
 4. Provide vent and drain fittings, and thermostatically controlled heaters to protect to -20°F (-29°C) ambient in off-cycle.
B. Air Cooled Condenser:
 1. Coils: Condenser coils are made of a single material to avoid galvanic corrosion due to dissimilar metals. Coils and headers are brazed as one piece. Integral sub cooling is included. The design working pressure of the coil is 650 PSIG (45 bar). Condenser coil shall be pressure washable up to 1500 psi washer.
 2. Low Sound Fans: Shall be dynamically and statically balanced, direct drive, corrosion resistant glass fiber reinforced composite blades molded into a low noise, full-airfoil cross section, providing vertical air discharge and low sound. Each fan in its own compartment to prevent crossflow during fan cycling. Guards of heavy gauge, PVC (polyvinylchloride) coated or galvanized steel.
 3. Fan Motors: High efficiency, direct drive, 6 pole, 3phase, insulation class “F”, current protected, Totally Enclosed Air-Over (TEAO), rigid mounted, with double sealed, permanently lubricated, ball bearings.
International Trade Center HVAC Renovation

2.05 CONTROLS
A. General: Automatic start, stop, operating, and protection sequences across the range of scheduled conditions and transients.
B. Microprocessor Enclosure: Rain and dust tight NEMA 3R/12 powder painted steel cabinet with hinged, latched, and gasket sealed door.
C. Microprocessor Control Center:
1. Automatic control of compressor start/stop, anti-coincidence and anti-recycle timers, automatic pumpdown shutdown, condenser fans, evaporator pump, evaporator heater, unit alarm contacts, and chiller operation from 0°F to 125°F (-18°C to 52°C) ambient. Automatic reset to normal chiller operation after power failure.
2. Remote water temperature reset via 0-10 VDC or 4-20 mA input signal or up to two steps of demand (load) limiting.
3. Software stored in non-volatile memory, with programmed setpoints retained in lithium battery backed real-time-clock (RTC) memory for minimum 5 years.
4. Forty character liquid crystal display, descriptions in English (or Spanish, French, Italian, or German), numeric data in English (or Metric) units. Sealed keypad with sections for Setpoints, Display/Print, Entry, Unit Options & clock, and On/Off Switch.
5. Programmable Setpoints (within Manufacturer limits): display language; chilled liquid temperature setpoint and range, remote reset temperature range, set daily schedule/holiday for start/stop, manual override for servicing, low and high ambient cutouts, number of compressors, low liquid temperature cutout, low suction pressure cutout, high discharge pressure cutout, anti-recycle timer (compressor start cycle time), and anti-coincident timer (delay compressor starts).
6. Display Data: Return and leaving liquid temperatures, low leaving liquid temperature cutout setting, low ambient temperature cutout setting, outdoor air temperature, English or metric data, suction pressure cutout setting, each system suction pressure, discharge pressure (optional), liquid temperature reset via a Johnson Controls ISN DDC or Building Automation System (by others) via PWM input as standard or a 4-20milliamp or 0-10 VDC input with optional BAS interface, anti-recycle timer status for each compressor, anti-coincident system start timer condition, compressor run status, no cooling load condition, day, date and time, daily start/stop times, holiday status, automatic or manual system lead/lag control, lead system definition, compressor starts/operating hours (each), status of hot gas valves, evaporator heater and fan operation, run permissive status, number of compressors running, liquid solenoid valve status, load & unload timer status, water pump status.
7. System Safeties: Shall cause individual compressor systems to perform auto shut down; manual reset required after the third trip in 90 minutes. Includes: high discharge pressure, low suction pressure, high pressure switch, and motor protector. Compressor motor protector shall protect against damage due to high input current or thermal overload of windings.
8. Unit Safeties: Shall be automatic reset and cause compressors to shut down if low ambient, low leaving chilled liquid temperature, under voltage, and flow switch operation. Contractor shall provide flow switch and wiring per chiller manufacturer requirements.
9. Alarm Contacts: Low ambient, low leaving chilled liquid temperature, low voltage, low battery, and (per compressor circuit): high discharge pressure, and low suction pressure.
D. Manufacturer shall provide any controls not listed above, necessary for automatic chiller operation. Mechanical Contractor shall provide field control wiring necessary to interface sensors to the chiller control system.

2.06 POWER CONNECTION AND DISTRIBUTION
A. Power Panels:
1. NEMA 3R/12 rain/dust tight, powder painted steel cabinets with hinged, latched, and gasket sealed outer doors. Provide main power connection(s), control power connections, compressor and fan motor start contactors, current overloads, and factory wiring.
2. Power supply shall enter unit at a single location, be 3phase of scheduled voltage, and connect to individual terminal blocks per compressor. Separate disconnecting means and/or external branch circuit protection (by Contractor) required per applicable local or national codes.
B. Compressor, control and fan motor power wiring shall be located in an enclosed panel or routed through liquid tight conduit.
2.07 ACCESSORIES AND OPTIONS
Some accessories and options supercede standard product features. Your Johnson Controls representative will be pleased to provide assistance.
A. Microprocessor controlled, Factory installed Across-the-Line type compressor motor starters as standard.
B. Outdoor Ambient Temperature Control
 1. Low Ambient Control: Permits unit operation to 0°F ambient. Standard unit controls to 30°F ambient.
 2. High Ambient Control: Permits unit operation above 115°F ambient.
C. Power Supply Connections:
 1. Single Point Power Supply: Single point Terminal Block for field connection and interconnecting wiring to the compressors. Separate external protection must be supplied, by others, in the incoming power wiring, which must comply with the National Electric Code and/or local codes.
D. Control Power Transformer: Converts unit power voltage to 120-1-60 (500 VA capacity). Factory-mounting includes primary and secondary wiring between the transformer and the control panel.
E. Condenser Coil Environmental Protection:
 1. Post-Coated Dipped: Dipped-cured coating on condenser coils for seashore and other corrosive applications (with the exception of strong alkalis, oxidizers, and wet bromine, chlorine and fluorine in concentrations greater than 100 ppm).
F. Protective Chiller Panels (Factory or Field Mounted)
 1. Louvered/Wire Panels: Louvered steel panels on external condenser coils painted as per remainder of unit cabinet. Heavy gauge, welded wire-mesh, coated to resist corrosion, around base of machine to restrict unauthorized access.
G. Flow Switch (Field-mounted): Vapor proof SPDT, NEMA 4X switch (___150 PSIG or ___300 PSIG), -20°F to 250°F.
H. Building Automation System (EMS) Reset Interface: Chiller to accept 4 to 20mA, 0 to 10 VDC, or discrete contact closure input to reset the leaving chilled liquid temperature.
I. Vibration Isolation (Field-mounted):
 1. Elastomeric (Neoprene Pad) Isolators.

PART 3 – EXECUTION

3.01 INSTALLATION
A. General: Rig and Install in full accordance with Manufacturers requirements, Project drawings, and Contract documents.
B. Location: Locate chiller as indicated on drawings, including cleaning and service maintenance clearance per Manufacturer instructions. Adjust and level chiller on support structure.
C. Components: Installing Contractor shall provide and install all auxiliary devices and accessories for fully operational chiller.
D. Electrical: Co-ordinate electrical requirements and connections for all power feeds with Electrical Contractor (Division 16).
E. Controls: Coordinate all control requirements and connections with Controls Contractor.
F. Finish: Installing Contractor shall paint damaged and abraded factory finish with touch-up paint matching factory finish.